Abstract:
According to the present invention, a light-emitting diode with improved light extraction efficiency comprises: a semiconductor laminated structure including an N-layer, a light-emitting layer, and a P-layer formed on a substrate; an N-type electrode formed on the N-layer; and a P-type electrode formed on the P-layer, wherein the N-type electrode and the P-type electrode include a pad electrode and a dispersion electrode, and the N-type electrode and/or the P-type electrode includes a reflective electrode layer for reflecting light onto the dispersion electrode. Thus, the light-emitting diode has a reflective electrode layer on the electrode so as to improve light extraction efficiency. Further, a reflective layer is patterned beneath a pad unit, thus forming roughness and improving adhesion.
Abstract:
Disclosed herein is an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer; a first electrode pad located on the second conductive type semiconductor layer opposite to the first conductive type semiconductor layer; a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer; a second electrode pad electrically connected to the second conductive type semiconductor layer; and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.
Abstract:
A light-emitting diode (LED) including a semiconductor stack structure including a first semiconductor layer, an active layer, and a second semiconductor layer, the semiconductor stack disposed on a substrate, a conductive substrate disposed on the semiconductor stack structure, and an electrode disposed on the conductive substrate and in ohmic contact with the conductive substrate, wherein the electrode comprises grooves penetrating the electrode and a portion of the conductive substrate.
Abstract:
According to the present invention, a light-emitting diode with improved light extraction efficiency comprises: a semiconductor laminated structure including an N-layer, a light-emitting layer, and a P-layer formed on a substrate; an N-type electrode formed on the N-layer; and a P-type electrode formed on the P-layer, wherein the N-type electrode and the P-type electrode include a pad electrode and a dispersion electrode, and the N-type electrode and/or the P-type electrode includes a reflective electrode layer for reflecting light onto the dispersion electrode. Thus, the light-emitting diode has a reflective electrode layer on the electrode so as to improve light extraction efficiency. Further, a reflective layer is patterned beneath a pad unit, thus forming roughness and improving adhesion.
Abstract:
Exemplary embodiments of the present invention disclose a light-emitting diode (LED) including a semiconductor stack structure including a first semiconductor layer, an active layer, and a second semiconductor layer, the semiconductor stack disposed on a substrate, a conductive substrate disposed on the semiconductor stack structure, and an electrode disposed on the conductive substrate and in ohmic contact with the conductive substrate, wherein the electrode comprises grooves penetrating the electrode and a portion of the conductive substrate.
Abstract:
Disclosed are a light-emitting diode having improved light extraction efficiency and a method for manufacturing same. This light-emitting diode includes: a gallium nitride substrate having an upper surface and a lower surface; and a gallium nitride semiconductor multilayer structure disposed on the lower surface of the substrate, and having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer. Herein, the gallium nitride substrate has a main pattern having a protruding portion and a concave portion on the upper surface, and a rough surface formed on the protruding portion of the main pattern. The light-emitting diode is capable of improving light extraction efficiency through the upper surface thereof since the rough surface is formed along with the main pattern on the upper surface of the gallium nitride substrate.
Abstract:
A light-emitting diode includes a substrate, and a light-emitting structure disposed on the substrate. The light-emitting structure includes a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A transparent electrode layer including concave portions and convex portions is disposed on the second conductivity-type semiconductor layer. Micro-lenses are disposed on the transparent electrode layer and completely cover the concave portions, and only partially cover the convex portions that are disposed between the micro-lenses.