摘要:
A method and structure for forming a damascene structure with reduced capacitance by forming one or more of: the passivation layer, the etch stop layer, and the cap layer using a low dielectric constant material comprising carbon nitride, boron nitride, or boron carbon nitride. The method begins by providing a semiconductor structure having a first conductive layer thereover. A passivation layer is formed on the first conductive layer. A first dielectric layer is formed over the passivation layer, and an etch stop layer is formed over the first dielectric layer. A second dielectric layer is formed over the etch stop layer, and an optional cap layer can be formed over the second dielectric layer. The cap layer, the second dielectric layer, the etch stop layer, and the first dielectric layer are patterned to form a via opening stopping on said passivation layer and a trench opening stopping on the first conductive layer. A carbon nitride passivation layer, etch stop layer, or cap layer can be formed by magnetron sputtering from a graphite target in a nitrogen atmosphere. A boron nitride passivation layer, etch stop layer, or cap layer can be formed by PECVD using B.sub.2 H.sub.6, ammonia, and nitrogen. A boron carbon nitride passivatation layer, etch stop layer, or cap layer can be formed by magnetron sputtering from a graphite target in a nitrogen and B.sub.2 H.sub.6 atmosphere.
摘要:
Novel low dielectric constant materials for use as dielectric in the dual damascene process are provided. A low dielectric constant material dielectric layer is formed by reacting a nitrogen-containing precursor and a substituted organosilane in a plasma-enhanced chemical deposition chamber. Also, novel low dielectric constant materials for use as a passivation or etch stop layer in the dual damascene process are provided. A carbon-doped silicon nitride passivation or etch stop layer having a low dielectric constraint is formed by reacting a substituted ammonia precursor and a substituted organosilane in a plasma-enhanced chemical deposition chamber. Alternatively, a silicon-carbide passivation or etch stop layer having a low dielectric constant is formed by reacting a substituted organosilane in a plasma-enhanced chemical deposition chamber. Also, an integrated process of forming passivation, dielectric, and etch stop layers for use in the dual damascene process is described.
摘要:
A method of forming a boron carbide layer for use as a barrier and an etch-stop layer in a copper dual damascene structure, and the structure itself are disclosed. In addition to providing a good barrier to copper diffusion, good insulating properties, high etch selectivity with respect to dielectric insulators, boron carbide also provides good electrical characteristics because of its low dielectric constant of less than 5. The amorphous boron carbide is formed in a PECVD chamber by introducing a boron source gas such as B2H6, B5H9+, and carbon source gas such as CH4 and C2H6 at a deposition temperature of about 400° C. Any one, or any combination of the passivation, etch-stop, cap layers of the damascene structure can comprise boron carbide.
摘要:
A method of fabricating trenches has been achieved. The method may be applied to damascene and dual damascene contacts to prevent damage to organic low dielectric constant materials due to photoresist ashing. A semiconductor substrate is provided. A first dielectric layer is deposited overlying the semiconductor substrate. A first etch stopping layer is deposited overlying the first dielectric layer. A second etch stopping layer is deposited overlying the first etch stopping layer. An optional anti-reflective coating is applied. A photoresist layer is deposited. The photoresist layer is patterned to define openings for planned trenches. The second etch stopping layer is etched through to form a hard mask for the planned trenches. The photoresist layer is stripped away by ashing where the first etch stopping layer protects the first dielectric layer from damage due to the presence of oxygen radicals. The first etch stopping layer is etched through to complete the trenches, and the integrated circuit device is completed.
摘要:
A damascene structure with reduced capacitance dielectric stacking comprise a passivation, a first dielectric, an etch stop, a second dielectric and a cap layer over a first conductive layer formed on a semiconductor. The passivation, the etch stop, and the cap layers comprise low dielectric constant materials carbon nitride, boron nitride, or boron carbon nitride. The stack is patterned to form a via opening to the first conductive layer. A trench opening is formed stopping on the etch stop layer. A barrier layer of TaN, WN, TaSiN or Ta and a second conductive material is applied to the openings. Passivation, etch stop, or cap layers can be formed with carbon nitride by magnetron sputtering from a graphite target in a nitrogen atmosphere; boron carbon nitride by magnetron sputtering from a graphite target in a nitrogen and B2H6 atmosphere; or boron nitride by PECVD using B2H6, ammonia, and nitrogen.
摘要:
This invention relates to a method of fabrication used for semiconductor integrated circuit devices, and more specifically to the use an alternate etch stop in dual damascene interconnects that improves adhesion between low dielectric constant organic materials. In addition, the etch stop material is a silicon containing material and is transformed into a low dielectric constant material (k=3.5 to 5), which becomes silicon-rich silicon oxide after UV radiation and silylation, oxygen plasma.
摘要:
A method for reducing RC delay in integrated circuits by lowering the dielectric constant of the intermetal dielectric material between metal interconnects or metal damascene interconnects is described. The dielectric constant of the intermetal dielectric is lowered by introducing air into the intermetal dielectric between metal interconnections. An air bridge comprising a porous material, preferably amorphous silicon, porous silicon oxide, or porous silsesquioxane, is deposited over a layer containing a reactive organic material. An oxygen plasma treatment or an anisotropic etching through the pores in the air bridge layer removes at least a portion of the reactive material, leaving air plugs within the intermetal dielectric.
摘要:
A semiconductor chip having an exposed metal terminating pad thereover, and a separate substrate having a corresponding exposed metal bump thereover are provided. A conducting polymer plug is formed over the exposed metal terminating pad. A conforming interface layer is formed over the conducting polymer plug. The conducting polymer plug of the semiconductor chip is aligned with the corresponding metal bump. The conforming interface layer over the conducting polymer plug is mated with the corresponding metal bump. The conforming interface layer is thermally decomposed, adhering and permanently attaching the conducting polymer plug with the corresponding metal bump. Methods of forming and patterning a nickel carbonyl layer are also disclosed.
摘要:
An inexpensive and safe copper removal method in the fabrication of integrated circuits is described. Copper is stripped or removed by a chemical mixture comprising an ammonium salt, an amine, and water. The rate of copper stripping can be controlled by varying the concentration of the ammonium salt component and the amount of water in the mixture. Also a novel chemical mixture for stripping copper and removing copper contamination is provided. The novel chemical mixture for removing or stripping copper comprises an ammonium salt, an amine, and water. For example, the novel chemical mixture may comprise ammonium fluoride, water, and ethylenediamine in a ratio of 1:1:1.
摘要:
A process for forming a first group of gate structures, designed to operate at a lower voltage than a simultaneously formed second group of gate structures, has been developed. The process features the thermal growth of a first silicon dioxide gate insulator layer, on a portion of the semiconductor substrate used for the lower voltage gate structures, while simultaneously forming a thicker, second silicon dioxide gate insulator layer on a portion of the semiconductor substrate used for the higher voltage gate structures. The thermal growth of the first, and second silicon dioxide gate insulator layers is accomplished via diffusion of the oxidizing species: through a thick, composite silicon nitride layer, to obtain the thinner, first silicon dioxide gate insulator layer, on a first portion of the semiconductor substrate; and through a thinner, silicon nitride layer, to obtain the thicker, second silicon dioxide gate insulator layer, on a second portion of the semiconductor substrate.