Abstract:
A system and method for photoresists is provided. In an embodiment a cross-linking or coupling reagent is included within a photoresist composition. The cross-linking or coupling reagent will react with the polymer resin within the photoresist composition to cross-link or couple the polymers together, resulting in a polymer with a larger molecular weight. This larger molecular weight will cause the dissolution rate of the photoresist to decrease, leading to a better depth of focus for the line.
Abstract:
Disclosed herein is a method of forming a coating, comprising applying a first coating to a substrate having a plurality of topographical features, planarizing a top surface of the first coating, and drying the coating after planarizing the top surface of the first coating. The first coating may be applied over the plurality of topographical features, and substantially liquid during application. The first coating may optionally be a conformal coating over topographical features of the substrate. The conformal coating may be dried prior to planarizing the top surface of the first coating and a solvent applied to the conformal coating, with the top surface of the conformal coating being substantially planar after application of the solvent. The coating may have a planar surface prior to the drying the first coating and the first coating may be dried without substantial spin-drying by modifying an environment of the first coating.
Abstract:
A system and method for anti-reflective layers is provided. In an embodiment the anti-reflective layer comprises a floating component in order to form a floating region along a top surface of the anti-reflective layer after the anti-reflective layer has dispersed. The floating component may be a floating cross-linking agent, a floating polymer resin, or a floating catalyst. The floating cross-linking agent, the floating polymer resin, or the floating catalyst may comprise a fluorine atom.
Abstract:
Methods and materials for making a semiconductor device are described. The method includes forming a middle layer (ML) of a patterning stack (e.g., a tri-layer patterning stack such as a tri-layer resist) and forming a photoresist layer directly on the middle layer. The middle layer includes an additive component having a photo base generator (PBG). The substrate including the photoresist layer and the middle layer is then exposed to a radiation. A covalent bond between the ML and the photoresist layer may be formed.
Abstract:
A method for fabricating a semiconductor product includes applying a photo-resist layer to a substrate, the photo-resist layer including a higher acid concentration at an upper portion of the photo-resist layer than at a lower portion of the photo-resist layer. The method also includes exposing the photo-resist layer to a light source through a mask including a feature, the photo-resist layer including a floating, diffusing acid that will diffuse into a region of the photo-resist layer affected by the feature while not diffusing into a feature formed by the mask.
Abstract:
A lithography method includes forming a photosensitive layer on a substrate, exposing the photosensitive layer, baking the photosensitive layer., and developing the exposed photosensitive layer. The photosensitive layer includes a polymer that turns soluble to a base solution in response to reaction with acid, a plurality of photo-acid generators (PAGs) that decompose to form acid in response to radiation energy, and a plurality of quenchers having boiling points distributed between about 200 C and about. 350 C. The quenchers also have molecular weights distributed between 300 Dalton and about 20000 Dalton, and are vertically distributed in the photosensitive layer such that a first concentration C1 at a top portion of the photosensitive layer is greater than a second concentration C2 at a bottom portion of the photosensitive layer.
Abstract:
A method of manufacturing a semiconductor device includes forming a first layer of a first planarizing material over a patterned surface of a substrate, forming a second layer of a second planarizing material over the first planarizing layer, crosslinking a portion of the first planarizing material and a portion of the second planarizing material, and removing a portion of the second planarizing material that is not crosslinked. In an embodiment, the method further includes forming a third layer of a third planarizing material over the second planarizing material after removing the portion of the second planarizing material that is not crosslinked. The third planarizing material can include a bottom anti-reflective coating or a spin-on carbon, and an acid or an acid generator. The first planarizing material can include a spin-on carbon, and an acid, a thermal acid generator or a photoacid generator.
Abstract:
A method of forming a pattern in a photoresist includes forming a photoresist layer over a substrate, and selectively exposing the photoresist layer to actinic radiation to form a latent pattern. The latent pattern is developed by applying a developer composition to the selectively exposed photoresist layer to form a pattern. The developer composition includes a first solvent having Hansen solubility parameters of 15 pKa>9.5; and a second solvent having a dielectric constant greater than 18. The first solvent and the second solvent are different solvents.
Abstract:
A lithography method is described. The method includes forming a resist layer over a substrate, performing a treatment on the resist layer to form an upper portion of the resist layer having a first molecular weight and a lower portion of the resist layer having a second molecular weight less than the first molecular weight, performing an exposure process on the resist layer, and performing a developing process on the resist layer to form a patterned resist layer.
Abstract:
A method of manufacturing a semiconductor device includes forming a first layer of a first planarizing material over a patterned surface of a substrate, forming a second layer of a second planarizing material over the first planarizing layer, crosslinking a portion of the first planarizing material and a portion of the second planarizing material, and removing a portion of the second planarizing material that is not crosslinked. In an embodiment, the method further includes forming a third layer of a third planarizing material over the second planarizing material after removing the portion of the second planarizing material that is not crosslinked. The third planarizing material can include a bottom anti-reflective coating or a spin-on carbon, and an acid or an acid generator. The first planarizing material can include a spin-on carbon, and an acid, a thermal acid generator or a photoacid generator.