Abstract:
The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method may be performed by forming a plurality of interconnect layers within a dielectric structure over an upper surface of a substrate. A passivation structure is formed over the dielectric structure. The passivation structure has sidewalls and a horizontally extending surface defining has a recess within an upper surface of the passivation structure. A bond pad is formed having a lower surface overlying the horizontally extending surface and one or more protrusions extending outward from the lower surface. The one or more protrusions extend through one or more openings within the horizontally extending surface to contact a first one of the plurality of interconnect layers. An upper passivation layer is deposited on sidewalls and an upper surface of the bond pad and on sidewalls and the upper surface of the passivation structure.
Abstract:
The present disclosure relates to an integrated circuit. The integrated circuit includes a plurality of interconnects within a dielectric structure over a substrate. A passivation structure is arranged over the dielectric structure. The passivation structure has sidewalls connected to one or more upper surfaces of the passivation structure. A bond pad is arranged directly between the sidewalls of the passivation structure. An upper passivation layer is disposed over the passivation structure and the bond pad. The upper passivation layer extends from over an upper surface of the bond pad to within a recess in the upper surface of the bond pad.
Abstract:
The present disclosure relates to a stacked SPAD image sensor with a CMOS Chip and an imaging chip bonded together, to improve the fill factor of the SPAD image sensor, and an associated method of formation. In some embodiments, the imaging chip has a plurality of SPAD cells disposed within a second substrate. The CMOS Chip has a first interconnect structure disposed over a first substrate. The imaging chip has a second interconnect structure disposed between the second substrate and the first interconnect structure. The CMOS Chip and the imaging chip are bonded together through along an interface disposed between the first interconnect structure and the second interconnect structure.
Abstract:
The present disclosure relates to a semiconductor image sensor device. In some embodiments, the semiconductor image sensor device includes a semiconductor substrate having a first surface configured to receive incident radiation. A plurality of sensor elements are arranged within the semiconductor substrate. A first charged layer is arranged on an entirety of a second surface of the semiconductor substrate facing an opposite direction as the first surface. The second surface is between the first charged layer and the first surface of the semiconductor substrate.
Abstract:
The present disclosure relates to a stacked SPAD image sensor with a CMOS Chip and an imaging chip bonded together, to improve the fill factor of the SPAD image sensor, and an associated method of formation. In some embodiments, the imaging chip has a plurality of SPAD cells disposed within a second substrate. The CMOS Chip has a first interconnect structure disposed over a first substrate. The imaging chip has a second interconnect structure disposed between the second substrate and the first interconnect structure. The CMOS Chip and the imaging chip are bonded together through along an interface disposed between the first interconnect structure and the second interconnect structure.
Abstract:
The present disclosure relates to a BSI image sensor with improved DTI structures, and an associated method of formation. In some embodiments, the BSI image sensor comprises a plurality of image sensing elements disposed within a substrate corresponding to a plurality of pixel regions. A deep trench isolation (DTI) grid is disposed between adjacent image sensing elements and extending from an upper surface of the substrate to positions within the substrate. The DTI grid comprises air-gaps disposed under the upper surface of the substrate, the air-gaps having lower portions surrounded by a first dielectric layer and some upper portions sealed by a second dielectric layer.
Abstract:
The present disclosure relates to a CMOS image sensor having a doped region, arranged between deep trench isolation structures and an image sensing element, and an associated method of formation. In some embodiments, the CMOS image sensor has a pixel region disposed within a semiconductor substrate. The pixel region has an image sensing element configured to convert radiation into an electric signal. A plurality of back-side deep trench isolation (BDTI) structures extend into the semiconductor substrate on opposing sides of the pixel region. A doped region is laterally arranged between the BDTI structures and separates the image sensing element from the BDTI structures and the back-side of the semiconductor substrate. Separating the image sensing element from the BDTI structures prevents the image sensing element from interacting with interface defects near edges of the BDTI structures, and thereby reduces dark current and white pixel number.
Abstract:
A semiconductor structure for back side illumination (BSI) pixel sensors is provided. Photodiodes are arranged within a semiconductor substrate. A composite grid includes a metal grid and a low refractive index (low-n) grid. The metal grid includes first openings overlying the semiconductor substrate and corresponding to ones of the photodiodes. The low-n grid includes second openings overlying the semiconductor substrate and corresponding to ones of the photodiodes. Color filters are arranged in the first and second openings of the corresponding photodiodes and have a refractive index greater than a refractive index of the low-n grid. Upper surfaces of the color filters are offset relative to an upper surface of the composite grid. A method for manufacturing the BSI pixel sensors is also provided.
Abstract:
A semiconductor device includes a substrate having a front side and a back side opposite to each other. A plurality of photodetectors is disposed in the substrate within a pixel region. An isolation structure is disposed within the pixel region and between the photodetectors. The isolation structure includes a back side isolation structure extending from the back side of the substrate to a position in the substrate. A conductive plug structure is disposed in the substrate within a periphery region. A conductive cap is disposed on the back side of the substrate and extends from the pixel region to the periphery region and electrically connects the back side isolation structure to the conductive plug structure. A conductive contact lands on the conductive plug structure, and is electrically connected to the back side isolation structure through the conductive plug structure and the conductive cap.
Abstract:
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.