FIELD EFFECT TRANSISTOR WITH MULTIPLE HYBRID FIN STRUCTURE AND METHOD

    公开(公告)号:US20230122250A1

    公开(公告)日:2023-04-20

    申请号:US17737915

    申请日:2022-05-05

    Abstract: A device includes a substrate, first and second gate structures, first and second hybrid fins, and first and second sidewalls. The first gate structure is over and surrounds a first vertical stack of nanostructures. The second gate structure is over and surrounds a second vertical stack of nanostructures. The second gate structure and the first gate structure extend along a first direction, and are laterally separated from each other in a second direction, the second direction being substantially perpendicular to the first direction. The first hybrid fin extends through and under the first gate structure and the second gate structure, the extending being along the second direction. The second hybrid fin is between the first gate structure and the second gate structure. The second hybrid fin has: a first sidewall that abuts the first gate structure; and a second sidewall that abuts the second gate structure.

    Method and device for forming metal gate electrodes for transistors

    公开(公告)号:US11521858B2

    公开(公告)日:2022-12-06

    申请号:US17174990

    申请日:2021-02-12

    Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor includes: a first source and a first drain separated by a first distance, a first semiconductor structure disposed between the first source and first drain, a first gate electrode disposed over the first semiconductor structure, and a first dielectric structure disposed over the first gate electrode. The first dielectric structure has a lower portion and an upper portion disposed over the lower portion and wider than the lower portion. The second transistor includes: a second source and a second drain separated by a second distance greater than the first distance, a second semiconductor structure disposed between the second source and second drain, a second gate electrode disposed over the second semiconductor structure, and a second dielectric structure disposed over the second gate electrode. The second dielectric structure and the first dielectric structure have different material compositions.

    Semiconductor Device With Facet S/D Feature And Methods Of Forming The Same

    公开(公告)号:US20220359659A1

    公开(公告)日:2022-11-10

    申请号:US17872439

    申请日:2022-07-25

    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary method comprises alternately forming first semiconductor layers and second semiconductor layers over a substrate, wherein the first semiconductor layers and the second semiconductor layers include different materials and are stacked up along a direction substantially perpendicular to a top surface of the substrate; forming a dummy gate structure over the first and second semiconductor layers; forming a source/drain (S/D) trench along a sidewall of the dummy gate structure; forming inner spacers between edge portions of the first semiconductor layers, wherein the inner spacers are bended towards the second semiconductor layers; and epitaxially growing a S/D feature in the S/D trench, wherein the S/D feature contacts the first semiconductor layers and includes facets forming a recession away from the inner spacers.

    Method for metal gate cut and structure thereof

    公开(公告)号:US11081356B2

    公开(公告)日:2021-08-03

    申请号:US16366511

    申请日:2019-03-27

    Abstract: A method includes providing a structure having a substrate, first and second semiconductor fins extending from the substrate, and a dielectric fin between the first and second semiconductor fins; forming a temporary gate on top and sidewalls of the first and second semiconductor fins and the dielectric fin; forming gate spacers on sidewalls of the temporary gate; removing the temporary gate and a first portion of the dielectric fin between the gate spacers; forming a gate between the gate spacers and on top and sidewalls of the first and second semiconductor fins, wherein the dielectric fin is in physical contact with sidewalls of the gate; removing a second portion of the dielectric fin, thereby exposing the sidewalls of the gate; and performing an etching process to the gate through the exposed sidewalls of the gate, thereby separating the gate into a first gate segment and a second gate segment.

Patent Agency Ranking