Abstract:
Rod-shaped or cylindrical structures in the nm range on a substrate of silicon are manufactured. A first cylinder of silicon is selectively epitaxially deposited in the hole of a mask layer of oxide, and the mask layer is removed. The silicon is then oxidized to form an oxide layer having such a thickness that a thinner, second cylinder of silicon having practically the same height as the first cylinder remains. In a last step, this oxide layer is removed, so that the second cylinder forms a freestanding silicon rod on the surface of the substrate.
Abstract:
A turn-off thyristor whereby an n-base layer not contacted by a gate electrode has at least one thin semiconductor layer inserted into it that is oppositely doped. Its distance from a pn-junction between a p-base and the n-base is selected so small that the maximum field strength of the space charge zone building up at this pn-junction upon turn-off of the thyristor is limited to a non-critical value at which an avalanche breakdown with respect to the charge carriers to be cleared out does not yet occur.
Abstract:
A reactor configuration contains a housing connected to a silicon wafer. The silicon wafer has pores extending from a first main area of the silicon wafer into an interior of the silicon wafer, preferably as far as a second main area of the silicon wafer. A catalyst layer at least partly covers the surface of the pores.
Abstract:
An optical structure includes a substrate having semiconductor material and a grating structure. The grating structure has the property of emitting at least one frequency band so that light having a frequency from that frequency band cannot propagate in the grating structure. The grating structure has a configuration of pores and a defective region. The pores are disposed outside the defective region in a periodic array, and the periodic array is disturbed in the defective region. A surface of the grating structure is provided with a conductive layer at least in the vicinity of the defective region. A method for producing the optical structure is also provided.
Abstract:
A first source-drain region, a channel region, and a second source-drain region are arranged one after another in a semiconductor substrate. At least the surface of the channel region and parts of the first source-drain region are covered by a dielectric layer. A ferroelectric layer is disposed on the surface of the dielectric layer between two polarization electrodes. A gate electrode is arranged on the surface of the dielectric layer. The thickness of the dielectric layer is dimensioned such that a remanent polarization of the ferroelectric layer, which is aligned between the two polarization electrodes, produces compensation charges in part of the channel region. The ferroelectric transistor is suitable as a memory cell for a memory cell configuration.
Abstract:
A method for fabricating a capacitor for a semiconductor memory configuration. In this case, a selectively etchable material is applied to a conductive support, which is connected to a semiconductor body via a contact hole in an insulator layer, and patterned. A first conductive layer is applied thereon and patterned. A hole is introduced into the first conductive layer, through which hole the selectively etchable material is etched out. A cavity is produced under the first conductive layer in the process. The inner surface of the cavity and the outer surface of the first conductive layer are provided with a dielectric layer, to which a second conductive layer is applied and patterned.
Abstract:
A bottle-shaped trench capacitor having an expanded lower trench portion with an epi layer therein. The epi layer serves as the buried plate of the trench capacitor. A diffusion region surrounds the expanded lower trench portion to enhance the dopant concentration of the epi layer. The diffusion region is formed by, for example, gas phase doping, plasma doping, or plasma immersion ion implantation.
Abstract:
The memory cell has transistors that are arranged three-dimensionally. Vertical MOS transistors are arranged on the sidewalls of semiconductor webs, and a plurality of transistors are arranged one above the other on each sidewall. The transistors that are arranged one above the other on a sidewall are connected in series.
Abstract:
For manufacturing an electrically conductive tip composed of a doped semiconductor material, a mask layer is produced on a substrate composed of the semiconductor material. This mask layer contains a material at least at its surface and directly on the substrate whereon the semiconductor material does not grow in a selective epitaxy. An opening wherein the surface of the substrate lies exposed is produced in the mask layer. The electrically conductive tip is produced by a selective epitaxy on the exposed surface of the substrate such that the layer growth in the direction parallel to the surface of the substrate is lower than in the direction perpendicular to the surface of the substrate.
Abstract:
A MOS transistor of a memory cell and a bit line connected thereto are disposed on a first surface of a substrate. A capacitor of the memory cell is disposed on a second surface of the substrate, the second surface being opposite to the first surface. A contact is disposed in the substrate and connects the capacitor to the MOS transistor.