Method using low temperature wafer bonding to fabricate transistors with heterojunctions of Si(Ge) to III-N materials
    31.
    发明授权
    Method using low temperature wafer bonding to fabricate transistors with heterojunctions of Si(Ge) to III-N materials 失效
    使用低温晶片接合制造具有Si(Ge)至III-N材料的异质结的晶体管的方法

    公开(公告)号:US08558285B2

    公开(公告)日:2013-10-15

    申请号:US13069725

    申请日:2011-03-23

    Abstract: A method for fabricating an electronic device, comprising wafer bonding a first semiconductor material to a III-nitride semiconductor, at a temperature below 550° C., to form a device quality heterojunction between the first semiconductor material and the III-nitride semiconductor, wherein the first semiconductor material is different from the III-nitride semiconductor and is selected for superior properties, or preferred integration or fabrication characteristics in the injector region as compared to the III-nitride semiconductor.

    Abstract translation: 一种制造电子器件的方法,包括在低于550℃的温度下将第一半导体材料晶体结合到III族氮化物半导体,以在第一半导体材料和III族氮化物半导体之间形成器件质量异质结,其中 第一半导体材料与III族氮化物半导体不同,并且与III族氮化物半导体相比被选择用于喷射器区域中的优异性能或优选的集成或制造特性。

    Low resistance tunnel junctions in wide band gap materials and method of making same
    35.
    发明授权
    Low resistance tunnel junctions in wide band gap materials and method of making same 有权
    宽带隙材料中的低电阻隧道结及其制造方法

    公开(公告)号:US08124957B2

    公开(公告)日:2012-02-28

    申请号:US11360166

    申请日:2006-02-22

    CPC classification number: H01L29/205 H01L29/2003 H01L29/88

    Abstract: A low resistance tunnel junction that uses a natural polarization dipole associated with dissimilar materials to align a conduction band to a valence band is disclosed. Aligning the conduction band to the valence band of the junction encourages tunneling across the junction. The tunneling is encouraged, because the dipole space charge bends the energy bands, and shortens a tunnel junction width charge carriers must traverse to tunnel across the junction. Placing impurities within or near the tunnel junction that may form deep states in the junction may also encourage tunneling in a tunnel junction. These states shorten the distance charge carriers must traverse across the tunnel junction.

    Abstract translation: 公开了一种低电阻隧道结,其使用与不同材料相关联的自然极化偶极子将导带与价带对准。 将导带与结点的价带对准,促进穿越结的隧穿。 鼓励隧道,因为偶极空间电荷弯曲能带,并缩短隧道结宽度,电荷载流子必须穿过穿越交界处的隧道。 将杂质置于隧道结内或其附近可能形成深交界处的深部状态也可能鼓励在隧道结中隧道。 这些状态缩短了电荷载体必须穿过隧道结的距离。

    METHOD OF FABRICATING SEMI-INSULATING GALLIUM NITRIDE USING AN ALUMINUM GALLIUM NITRIDE BLOCKING LAYER
    40.
    发明申请
    METHOD OF FABRICATING SEMI-INSULATING GALLIUM NITRIDE USING AN ALUMINUM GALLIUM NITRIDE BLOCKING LAYER 审中-公开
    使用氮化铝阻挡层制备半绝缘氮化铝的方法

    公开(公告)号:US20100109018A1

    公开(公告)日:2010-05-06

    申请号:US12610938

    申请日:2009-11-02

    CPC classification number: C30B29/406 C30B25/183 C30B29/36 C30B29/403

    Abstract: A method for fabricating a single crystal, high quality, semi-insulating (SI) gallium nitride (GaN) layer using an AlxGa1-xN blocking layer. A buffer layer is grown on a substrate, the AlxGa1-xN blocking layer is grown on the buffer layer, and a single crystal, high quality, SI-GaN layer is grown on the AlxGa1-xN blocking layer. The AlxGa1-xN blocking layer acts as a diffusion blocking layer that prevents the diffusion of donors from the substrate from reaching the SI-GaN layer. The resulting SI-GaN layer reduces parasitic current flow and parasitic capacitive effects in electronic devices.

    Abstract translation: 使用Al x Ga 1-x N阻挡层制造单晶,高质量,半绝缘(SI)氮化镓(GaN)层的方法。 在衬底上生长缓冲层,在缓冲层上生长Al x Ga 1-x N阻挡层,并且在Al x Ga 1-x N阻挡层上生长单晶,高质量的SI-GaN层。 Al x Ga 1-x N阻挡层充当扩散阻挡层,防止供体从衬底扩散到达SI-GaN层。 所产生的SI-GaN层减少了电子器件中的寄生电流和寄生电容效应。

Patent Agency Ranking