Abstract:
Disclosed is a resin composition including a polylactic acid resin (A) and a polycarbonate resin (B) and a molded article produced by molding the resin composition. The mass ratio (A/B) between the resins (A) and (B) is 40/60 to 80/20. The ratio (MFRA/MFRB) between the melt flow rate (MFRA) of the polylactic acid resin (A) and the melt flow rate (MFRB) of the polycarbonate resin (B) at 240° C. under a load of 21.2 N is 20 to 600. The polycarbonate resin (B) is particle-dispersed in island shapes in the polylactic acid resin (A) in a range from a surface of the molded article to a depth of 5 μm and lengths of cross sections of dispersed particles observed in a cross section of the molded article are 0.1 μm or more.
Abstract:
At an optional stage in the production step of a biaxially stretched film using a polyamide resin including, as a first component, nylon 6, and as a second component, a polyamide including xylylenediamine and an aliphatic dicarboxylic acid having 4 to 12 carbon atoms, the film is brought into contact with water set at 40° C. or higher and lower than 70° C. for 1 to 10 minutes and further with water set at 70° C. or higher for 1 to 10 minutes. In the film thus obtained, the content of low molecular weight compounds is 0% by mass to 0.2% by mass.
Abstract:
A flame-retardant glass fiber-reinforced polyamide resin composition, containing: 100 parts by mass of a flame-retardant resin composition consisting of (A) 60 to 90 percent by mass of a polyamide resin, and (B) 40 to 10 percent by mass of a flame retardant containing no halogen atom, (A)+(B) being 100 percent by mass; and 60 to 210 parts by mass of a flattened glass fiber (C) having a flat section of 1.5-10 in a ratio of major axis/minor axis, wherein the polyamide resin (A) contains a crystalline polyamide resin (a1) and an amorphous polyamide resin (a2), the flame retardant containing no halogen atom (B) contains a phosphinate (b1) and/or a diphosphinate (b2), and a blending ratio of the amorphous polyamide resin (a2) in the polyamide resin (A) is 0.1≦(a2)/(A)≦0.5.
Abstract:
Disclosed is a polylactic acid-based resin composition including a polylactic acid resin, a monocarbodiimide compound and a hydrotalcite compound, wherein the content of the monocarbodiimide compound is 0.1 to 10 parts by mass in relation to 100 parts by mass of the polylactic acid resin and the content of the hydrotalcite compound is 0.05 to 2 parts by mass in relation to 100 parts by mass of the polylactic acid resin.
Abstract:
Disclosed is a resin composition forming an adhesive layer between a polylactic acid resin substrate layer and a polyolefin resin substrate layer. The resin composition includes a modified polyolefin resin (A) and a terpene resin (B), and the mass ratio (A)/(B) between the both resins (A) and (B) is 20/80 to 99/1. Alternatively, the resin composition may be a resin composition including 10 to 90% by mass of a polylactic acid resin (C), 5 to 89% by mass of the modified polyolefin resin (A) and 1 to 80% by mass of a hydrogenated petroleum resin (D), with the total amount of these resins constrained to be 100% by mass.
Abstract:
Disclosed are a biaxially stretched polyamide resin film having gas barrier properties and a process for producing the biaxially stretched polyamide resin film having gas barrier properties. In this film, a gas barrier coat layer is formed on at least one side of a biaxially stretched polyamide resin film, the thickness of the gas barrier coat layer is 0.5 to 5 μm, and the amount of the extracted monomer in the polyamide resin film is 0.1% by mass or less. The production process includes, in the order of description, the steps of removing the monomer in an unstretched polyamide resin film, biaxial stretching, and laminating an anchor coat layer, performed where necessary, and forming a gas barrier coat layer.
Abstract:
Disclosed is a biodegradable resin composition improved in water barrier properties. Also disclosed is a molded body formed from such a resin composition. The biodegradable resin composition comprises 100 parts by mass of a biodegradable polyester resin and 0.1-15 parts by mass of a jojoba oil and/or a polar wax. The biodegradable polyester resin may contain not less than 50% by mass of a plant-based resin. Polylactic acid can be used as the plant-based resin.
Abstract:
Provided is a polyamide resin composition superior in mechanical properties such as strength and elastic modulus and also in toughness, durability, frictional abrasion resistance, and water absorption resistance, wherein the polyamide resin composition contains 0.1 to 4 parts by mass of an aliphatic epoxy compound (B) having three glycidyl groups in the molecule, formulated to 100 parts by mass of a polyamide resin (A) with silicate layers of swellable lamellar silicate dispersed therein. The epoxy equivalence of the aliphatic epoxy compound (B) is preferably 180 g/eq or less, and the aliphatic epoxy compound (B) preferably has trimethylolpropane and/or glycerol as a skeleton.
Abstract:
Disclosed is a monofilament allowing contrast X-ray radiography. At least part of the monofilament is formed of a thermoplastic resin containing a radiopaque agent. The monofilament contains the radiopaque agent in the thermoplastic resin in a content of 30 to 80% by mass, and has a Young's modulus of 0.1 to 5.0 cN/dtex and a fineness of 500 to 20000 dtex.
Abstract:
Disclosed is a thermoplastic resin composition obtained by mixing together 100 parts by mass of a polylactic acid resin or a polylactic acid resin composition, 0.01 to 10 parts by mass of a peroxide and 0.01 to 5 parts by mass of a silane compound having two or more functional groups selected from an alkoxy group, an acrylic group, a methacrylic group and a vinyl group. The polylactic acid resin composition may include 90 to 99.5% by mass of the polylactic acid resin and 0.5 to 10% by mass of a plasticizer. The thermoplastic resin composition may further include a fibrous reinforcing material and a polycarbodiimide compound, and where necessary, a flame retardant.