摘要:
A Ti oxide film is produced by a process comprising sputtering a Ti oxide film on a substrate in an atmosphere of at least one gas selected from the group consisting of a rare gas, a nitrogen-containing gas and an oxygen-containing gas within a chamber by means of a sputtering target composed of TiOx (1
摘要:
A method for applying a carbon nanotube growth catalyst to at least one specified location on a substrate surface of a substrate formed of conductive material, and the method includes a preparation step for preparing on the substrate a coating layer having a hole contacting the substrate surface at a location corresponding to the specified location. The method also includes a deposition step for forming by deposition a conical deposited material on a substrate surface portion contacting the hole by irradiating the substrate with electrically conductive material particles in a oblique direction from above the coating layer while rotating the substrate about a shaft perpendicular to the substrate surface, and for forming by deposition an eaves-like deposited layer which extends to close an opening of the hole. The method also includes a determination step for measuring a size of the opening in accordance with extension of the eaves-like deposited layer, and a catalyst applying step for applying the catalyst to a tip of the conical deposited material by way of irradiation of material particles of the catalyst via the opening when the opening is measured to have a specified size.
摘要:
A process for production of conductive catalyst particles, a process for production of a catalyst electrode capable of gas diffusion, an apparatus for production of conductive catalyst particles, and a vibrating apparatus. The process can effectively and uniformly coat the particles of a conductive powder with a catalytic substance.
摘要:
A photocatalytic member which does not undergo heat treatment is provided. A photocatalyst layer is formed on the surface of a substrate through the intermediary of an undercoat layer. The main component of the undercoat layer is a crystalline zirconium compound, the photocatalyst layer is constituted of a crystalline phase, and the substrate has a low heat resistant element.
摘要:
Structured catalysts useful for oxidizing alkanes, alkenes and combinations of alkanes and alkenes are described. The structure catalysts comprise one or more mixed metal oxide catalysts having a three dimensional structure that is self-supporting and that facilitates movement of gas phase reactants and products and one or more mixed metal oxide catalysts deposited on a three dimensional form of continuous unitary structures having openings that facilitates movement of gas phase reactants and products.
摘要:
A photo-electrolytic catalyst system which comprises two materials: (a) a semiconductor material with a non-zero energy gap Eg which, in response to an incident radiation having an energy greater than Eg, generates electron-hole pairs as charge carriers; and (b) a facilitating material in electronic contact with the semiconductor material to facilitate separation of the radiation-generated electrons from the holes to reduce the probability of charge carrier recombinations The catalyst makes use of both majority and minority charge carriers to promote photo-electrolysis reactions for producing hydrogen directly from water or an aqueous electrolyte at higher rates and improved efficiencies.
摘要:
This invention provides a composite device whereby surface reflection and interference colors can be inhibited, photocatalytic decomposition performance may be improved and hydrophilicity-acquiring rate may be improved. A mixture film (14) is deposited on the surface of a base (12). The mixture film (14) is a colorless and transparent mixture film with a high light transmittance made of a mixture of boron oxide and photocatalytic titanium oxide.
摘要:
A TinullOnullN film is formed on an SiO2 substrate by sputtering. For example, TiO2 is used as a target and nitrogen gas is introduced into the atmosphere. Crystallization is carried out by a post-sputtering heat treatment. Then a charge separation material such as Pt is supported on the TinullOnullN film. With the fabricated TiO2 crystals, the TinullOnullN film containing nitrogen exhibits a good catalytic reaction by using visible light as acting light. Since the charge separation material captures electrons or positive holes, recombination of electrons and positive holes is effectively prevented, and consequently more efficient photocatalytic reaction is performed. It is preferable to form a photocatalyst material film (TinullCrnullOnullN film) by sputtering the SiO2 substrate by use of TiO2 and Cr as the target in a nitrogen atmosphere. Crystallization is performed by a post-sputtering heat treatment.
摘要:
This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 300° C. to 700° C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided. The invention also relates to a method for producing an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream. The invention also relates to an anchored adsorbent and/or catalyst and binder system.
摘要:
A device and method for producing a thin-film catalyst are provided. The device includes a vacuum chamber, a plurality of evaporators, a plurality of gas guide pipes, an ion generator, and a control unit. The plurality of evaporators are configured to evaporate at least one film material. The plurality of gas guide pipes are configured to introduce a reactive gas. The ion generator is configured to ionize the reactive gas and the evaporated film material. The control unit is configured to control the vacuum chamber to be vacuumed, control at least two evaporators of the plurality of evaporators to be simultaneously started, control the plurality of gas guide pipes to introduce the reactive gas, and control an ion source current of the ion generator to be adjusted, such that the evaporated film material reacts with the reactive gas to form a catalytic film layer on a surface of a substrate.