Abstract:
The invention relates to the field of longevity enhancement. More particularly, the invention provides compositions and methods relating to modulation of mitochondrial function. In certain embodiments, the invention provides methods and related compositions for the enhancement of longevity in an animal, comprising inhibition of one or more electron transport chain components, such as cco-1 and homologs thereof, in a tissue-specific manner in the animal.
Abstract:
The invention relates to novel polynucleotides which encode novel polypeptides that are acetylcholine-gated chloride channel subunits and immunogenic or acetylcholine-binding fragments thereof. The novel polypeptides may be used for identifying compounds that modulate the acetylcholine-gated chloride channels, e.g. for use as pesticides and antiparasitic agents. Methods for identifying compounds that modulate the acetylcholine-gated chloride channels are provided.
Abstract:
The present invention relates to regulation of adult lifespan in eukaryotes. More particularly, the present invention is directed to methods of assaying for activators of the heat shock factor 1 (HSF-1) protein, which increases lifespan when overexpressed in an organism.
Abstract:
The present invention relates, in part, to the C. elegans SKN-1 gene and protein (a transcription factor), and target genes thereof. The invention includes various therapeutic methods and screening methods for identifying antioxidants.
Abstract:
Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
Abstract:
The invention relates to nematodes as model organisms for the investigation of neurodegenerative diseases, in particular, Parkinsons disease, uses and methods for the discovery of substances and genes which can be used in the treatment of the above disease states and identification of a nematode gene, From C elegans, which is homologous to the human parkin gene associated with Parkinsons disease. The invention further relates to those nematodes which contain an aberrant or missing expression of at least one gene, preferably a parkin gene and/or a α-synucleine gene, which is connected with Parkinsons disease. According to the invention, the above organisms can be used for the identification and characterization of medicaments for the treatment of said disease states.
Abstract:
The invention refers to a novel C. elegans p21-activated kinase gene, the pak-3 gene, and associated loss-of-function phenotypes. These phenotypes can be used to elucidate PAK signaling pathways in C. elegans and to screen compounds that modulate PAK signaling.
Abstract:
The invention provides isolated nucleic acids molecules, designated 25869, 25934, 26335, 50365, 21117, 38692, 46508, 16816, 16839, 49937, 49931 and 49933 nucleic acid molecules. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing 25869, 25934, 26335, 50365, 21117, 38692, 46508, 16816, 16839, 49937, 49931 or 49933 nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a 25869, 25934, 26335, 50365, 21117, 38692, 46508, 16816, 16839, 49937, 49931 or 49933 gene has been introduced or disrupted. The invention still further provides isolated 25869, 25934, 26335, 50365, 21117, 38692, 46508, 16816, 16839, 49937, 49931 or 49933 proteins, fusion proteins, antigenic peptides and anti-25869, 25934, 26335, 50365, 21117, 38692, 46508, 16816, 16839, 49937, 49931 or 49933 antibodies. Diagnostic and therapeutic methods utilizing compositions of the invention are also provided.
Abstract:
The invention relates to isolated nucleic acid molecules coding for SES-3 proteins or muted SES-3 proteins, and vectors and transgenic organisms containing such nucleic acid molecules. The invention also relates to uses of such nucleic acid molecules or others which are functionally similar, for producing pharmaceuticals and for producing model organisms. The invention further relates to the corresponding SES-3 proteins and muted SES-3 proteins, and the antibodies induced thereby. Finally, the invention relates to the use of substances which increase the expression of human presenilin, for the treatment of Alzheimer's disease, in addition to said substances themselves and pharmaceutical compositions containing the same.
Abstract:
This invention pertains to the discovery that DPR-1 encodes a putative nuclear hormone receptor (NHR) that, based on gene reporter studies, is expressed in the endoderm throughout the life of the worm. NHR family members are transcriptional regulators that are activated when bound to their small lipophilic ligands such as steroids. While some NHRs are localized to the nucleus, others are cytoplasmic in the absence of ligand and translocate to the nucleus upon ligand binding. Once in the nucleus, they bind target sequences and regulate gene expression.