Abstract:
A process for the production of a geopolymer composite. The disclosure further relates to a geopolymer composite, and the use of a geopolymer, a geopolymer in combination with an athermanous additive, or the geopolymer composite in expanded vinyl polymer, preferably vinyl aromatic polymer. Furthermore, the disclosure relates to a process for the production of expandable vinyl aromatic polymer granulate, and expandable vinyl aromatic polymer granulate. Finally, the disclosure relates to expanded vinyl foam, preferably vinyl aromatic polymer, and to a masterbatch comprising vinyl polymer and a), b), or c).
Abstract:
An apparatus and a method for expanding a slurry of thermally expandable thermoplastic microsphere is disclosed. The apparatus and method expand the slurry of thermally expandable thermoplastic microsphere without any direct contact to a fluid heat transfer medium. The apparatus and method utilise a distribution pipe attached to an outlet pipe.
Abstract:
A method of forming a skin-foam-substrate type structure particular suitable as an automobile trim component. The method comprises supplying a polymer resin containing a chemical foaming agent and including metal particles capable of inductive heating, that is positioned between a polymeric skin and substrate, followed by inductive heating to cause foaming of the polymeric resin. The foamed polymer resin adheres to the skin and substrate.
Abstract:
Thermoplastic resin foamed particles of the present invention including more than one functional additive selected from inorganic powder and inorganic fibers each includes a core layer formed of a thermoplastic resin and a coating layer in a foamed state formed of a thermoplastic resin, the mass ratio of the coating layer to the core layer is 99:1 to 50:50, the content (X) of the functional additive in the core layer is 5 to 90% by mass, and the content of the functional additive in the coating layer is smaller than the content (X) of the functional additive in the core layer. By this way, thermoplastic resin foamed particles from which a homogeneous foamed particle molding having excellent dimension stability, fusibility and appearance can be obtained while containing functional additive are provided.
Abstract:
Composite resin particles including: a polyethylene-based resin and a polystyrene-based resin, wherein the polyethylene-based resin and the polystyrene-based resin are included in the ranges of 50 to 20% by mass and 50 to 80% by mass respectively, with respect to the total of these resins, the polyethylene-based resin is composed of: a first polyethylene-based resin having a medium density to a high density in the range of 925 to 965 kg/m3; and a second polyethylene-based resin which is linear and which has a lower density than the first polyethylene-based resin, and the first polyethylene-based resin and the second polyethylene-based resin are included in the ranges of 90 to 30% by mass and 10 to 70% by mass respectively, with respect to the total of these resins.
Abstract:
Provided are non-crosslinked foamed polyethylene resin particles that have a bulk density BD of 10 g/L or more and 100 g/L or less and are obtained by foaming polyethylene resin particles containing an antistatic agent in an amount of 0.1 part by weight or more and 3 parts by weight or less with respect to 100 parts by weight of a polyethylene resin and having a density of 0.920 g/cm3 or more and less than 0.940 g/cm3, and the non-crosslinked foamed polyethylene resin particles have a shrinkage ratio of 3% or more and 30% or less determined in accordance with Formula (1). The non-crosslinked foamed polyethylene resin particles can simply afford an antistatic molded non-crosslinked foamed polyethylene resin body that has a small shrinkage ratio with respect to mold dimension, is deformed in a small degree, and has good surface stretch.
Abstract:
The invention relates to a process for the production of mould-foamed poly(meth)acrylimide (P(M)I) cores, in particular of polymethacrylimide (PMI) cores, which can be used by way of example in automobile construction or aircraft construction. A feature of this process is that polymer granules or polymer powder are charged to a compression mould where they are foamed. A particular feature of the process is that said two-shell compression mould has, respectively on both sides, a cavity that conforms to the shape and which serves for both the heating and the cooling of the granules and, respectively, of the rigid foam core produced therefrom.
Abstract:
Polypropylene resin foamed particles containing a polypropylene random copolymer having a ratio of a Z-average molecular weight Mz to a number average molecular weight Mn, Mz/Mn, of 20 or more and 300 or less, a melt-flow rate of 5 g/10 minutes or more and 20 g/10 minutes or less, a melt strength of 2.5 cN or less, and a flexural modulus of 600 MPa or more and 1600 MPa or less, and preferably having at least two heat quantity areas of fusion can provide an in-mold foam molded article such as a returnable box having a short molding cycle at in-mold foam molding and beautiful surface properties; and are excellent in moldability even if an inner pressure more than the atmospheric pressure is not provided to the particles or the particles are filled in a mold without compressing them with a gas during the in-mold foam molding.
Abstract:
Provided are (i) polyethylene resin foamed particles which are obtained by foaming polyethylene resin particles to be foamed having good productivity and a high expansion ratio and which are suppressed in reduction of cell diameters, and (ii) a polyethylene resin in-mold foam molded article obtained from the polyethylene resin foamed particles which has good surface smoothness while being reduced in surface yellowing. The polyethylene resin foamed particles (i) contain, as a base resin, a polyethylene resin composition containing, in an amount of not less than 1000 ppm to not more than 4000 ppm in total, one or more compounds selected from the group consisting of antioxidants, metal stearates, and inorganic substances and (ii) have Z-average molecular weight of not less than 40×104 to not more than 70×104, an average cell diameter of not less than 180 μm to not more than 450 μm, and an open-cell ratio of not more than 12%.
Abstract:
Styrenic polymer foams, especially expanded and/or extruded styrenic polymer foams, are flame retarded by use of one or more flame retardant additives. These additives are i) a diether of tetrabromobisphenol-S, which ether groups do not contain bromine and wherein at least one of the ether groups is an allyl group; ii) a diether of tetrabromobisphenol-S, wherein at least one of the ether groups contains bromine; iii) a substituted benzene having a total of 6 substituents on the ring and wherein at least 3 of the substituents are bromine atoms and at least two of the substituents are C1-4 alkyl groups; iv) tribromoneopentyl alcohol; v) a tris(dibromoalkyl) benzenetricarboxylate in which each dibromoalkyl group contains, independently, 3 to 8 carbon atoms; vi) a brominated polybutadiene which is partially hydrogenated and/or aryl-terminated; vii) at least one brominated allyl ether of a novolac; viii) a brominated poly(1,3-cycloalkadiene); ix) a brominated poly(4-vinylphenol allyl ether); x) a brominated N,TSP-phenylenebismaleimide; xi) a brominated N,N′-(4,4′-methylenediphenyl)bismaleimide; xii) a brominated N,N′-ethylenebis-maleimide; xiii) ethylenebis(dibromonorbornane-dicarboxrmide); xiv) tetrabromobisphenol-A; or xv) a combination of any two or more of i) through xiv).