Abstract:
A blade (100) has an airfoil (106) having a leading edge (114), a trailing edge (116), a pressure side (118), and a suction side (120) and extending from an inboard end (110) to a tip (112). An attachment root (108) is at the inboard end. The blade comprises an aluminum alloy substrate (102) and a coating at the tip (130). The coating (130) comprises an anodic layer (160) atop the substrate and an aluminum oxide layer (162) atop the anodic layer.
Abstract:
This method for producing anodic porous alumina such that an oxide coating film having a plurality of minute pores is formed at the surface of an aluminum substrate is characterized by containing: a step (a) for immersing the aluminum substrate in an electrolytic liquid resulting from mixing a plurality of acids; a step (b) for imposing a voltage on the aluminum substrate immersed in the electrolytic liquid; a step (c) for holding the aluminum substrate in the state of being immersed in the electrolytic liquid essentially without imposing a voltage on the aluminum substrate; and a step (d) for alternately repeating step (b) and step (c). By means of the present invention, it is possible using a simple device and with few steps to provide a method that easily produces anodic porous alumina such that an oxide coating film having a plurality of minute pores is formed at the surface of an aluminum substrate.
Abstract:
A method of preparing a metal composite, comprising the steps of: forming an anodic oxidation layer on a surface of a metal substrate; forming a dye layer comprising a dye and a water soluble ink on the anodic oxidation layer, wherein the dye layer has a graduated thickness; and removing the water soluble ink.
Abstract:
A lithographic printing plate support of the invention includes an aluminum plate and an anodized aluminum film which has micropores extending from a surface of the anodized film opposite from the aluminum plate in a depth direction of the anodized film; the micropores each have a large-diameter portion extending from the anodized film surface to an average depth (depth A) of 75 to 120 nm and a small-diameter portion which communicates with the bottom of the large-diameter portion; the average diameter of the large-diameter portion at the anodized film surface is at least 10 nm but less than 30 nm; a ratio of the depth A to the average diameter (depth A/average diameter) of the large-diameter portion is more than 4.0 but up to 12.0; and an average diameter of the small-diameter portion at the communication level is more than 0 but less than 10 nm.
Abstract:
A Haber-Bosch process including the steps of providing a reactor having a substrate with catalyst filaments formed thereon. The catalyst filaments are formed of a metal including iron. A nitrogen compound and hydrogen are injected into the reactor such that at least a portion of the nitrogen compound and hydrogen contact the catalyst filaments. The nitrogen compound and hydrogen are reacted with the catalyst filaments at a temperature of less than about 600° F. and a pressure of less than about 2000 psig.
Abstract:
To manufacture a chamber component for a processing chamber a first anodization layer is formed on a metallic article with impurities, the first anodization layer having a thickness greater than about 100 nm, and an aluminum coating is formed on the first anodization layer, the aluminum coating being substantially free from impurities. A second anodization layer can be formed on the aluminum coating.
Abstract:
A prototype aluminum mold for stampers that is used to manufacture stampers having a fine irregular surface structure on the surface thereof and containing aluminum and magnesium, wherein the content of magnesium is 0.1% by mass to 3% by mass, the content of silicon is 100 ppm by mass or less, the total content of elements other than aluminum and magnesium is 500 ppm by mass or less, and the number of magnesium silicide particles having an equivalent diameter of 10 nm or more on the surface of the prototype aluminum mold for stampers is 10/1000 μm2 or less.
Abstract:
A method of preparing aluminum alloy-resin composite and an aluminum alloy-resin composite obtained by the same are provided. of the method comprises: S1: anodizing a surface of an aluminum alloy substrate to form an oxide layer on the surface, the oxide layer including nanopores; S2: immersing the resulting aluminum alloy substrate obtained in step S1 in a buffer solution having a pH of about 10 to about 13, to form a corrosion pores on an outer surface of the oxide layer; and S3: injection molding a resin onto the surface of the resulting aluminum alloy substrate obtained in step S2 in a mold to obtain the aluminum alloy-resin composite.
Abstract:
A silicon polymer treatment with included pigments for anodized aluminum objects such as wheels. Titanium dioxide may be dispersed in polysiloxane or polysilazane to form a white polymer treatment on the object. Other beneficial components, such as corrosion inhibitors may be included in the polymer matrix.
Abstract:
A thermoelectric conversion element formed by laminating, on a substrate having a porous anodic oxidation film of aluminum, a thermoelectric conversion layer which contains an inorganic oxide semiconductor or an element having a melting point of 300° C. or higher, as a main component, and which has a void structure; and a method of producing the same.