Abstract:
Provided is a steel cord for reinforcing a rubber article which can further improve cut resistance when applied to a tire. Provided is a steel cord for reinforcing a rubber article including: one core strand 11 having a layered-twisted structure formed by twisting a plurality of steel filaments 1; and a plurality of sheath strands 12 having a layered-twisted structure formed by twisting a plurality of steel filaments 2, wherein the sheath strands are twisted around the core strand. A ratio S1/S of the sum S1 of cross-sectional areas of outermost layer sheath filaments constituting an outermost layer sheath of the core strand to the sum S of cross-sectional areas of all filaments constituting the core strand is from 0.69 to 0.74, and a ratio Ps/P of the sum Ps of strengths of the sheath strands to strength P of the cord as a whole is from 0.81 to 0.85.
Abstract:
A metal cord has cylindrical layers formed of an internal layer, an intermediate layer, and an external layer. The in internal layer includes M threads. The intermediate layer includes N threads wound in a helix around the internal layer. The external layer includes P threads wound in a helix around the intermediate layer. An inter-thread distance, D2, between the threads of the intermediate layer is greater than or equal to 25 μm. An inter-thread distance, D3, between the threads of the external layer is greater than or equal to 25 μm.
Abstract:
Hybrid rope (20) comprising a core element (22) containing high modulus fibers surrounded by at least one outer layer (24) containing wirelike metallic members (26). The core element (22) is coated (23) with a thermoplastic polyurethane or a copolyester elastomer, preferably the copolyester elastomer containing soft blocks in the range of 10 to 70 wt %. The coated material (23) on the inner core element (22) is inhibited to be pressed out in-between the wirelike members (26) of the hybrid rope (20) and the hybrid rope (20) has decreased elongation and diameter reduction after being in use.
Abstract:
The invention pertains to the production of cables and can be used for reinforcing single-block constructions and other articles made of concrete. The purpose of the invention is to create a self-rectifying reinforcing member. The reinforcement cable comprises a central wire and layer-forming wires spirally wound around the same and having a periodical profile. A periodical profile is applied on the outer section of the surface of the layer-forming wires and is made in the form of inclined protrusions above the generatrix of the crimped surface of the cable. The sections of the surface of the layer-forming wires in contact with other wires are made in the form of spirally-arranged planar flats. The cable is secured at the base of the structure and is attached upon each casting cycle between the previously-formed portion of the structure and a distribution matrix. The cable is supplied via bypass rollers and a guiding trough from reels arranged at the base. Before each casting cycle, the matrix is moved by a distance corresponding to a section to be formed. Each reinforcing member is integral along the entire length of the structure. The connection of perpendicular members is made using inserts or a tie wire.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract translation:本发明涉及可用作轮胎胎体加强件的增强元件的结构L + M + N的三层金属电缆,包括:具有直径d1的L线的内层C1,L为1至4,被 直径为d2的M线的中间层C2以螺距p2以螺距p2缠绕在一起,间距p2为M为3至12,所述层C2被缠绕在一起的直径为d3的N线的外层C3围绕,螺旋线为 间距p3,其N为8至20,所述电缆的特征在于由基于至少一种二烯弹性体的可交联或交联的橡胶组合物形成的护套至少覆盖所述层C2。 本发明还涉及由这种多层电缆增强的塑料材料和/或橡胶制成的制品或半成品,特别是工业车辆中使用的轮胎,特别是重型车辆轮胎及其胎体增强件 层
Abstract:
A cord obtained by twisting a plurality of strands each composed of a plurality of filaments is provided. A circumferential surface of the filament is coated with unvulcanized rubber to improve rubber intrusion, thereby improving corrosion resistance and suppressing twisting-loss.
Abstract:
The invention relates to a reinforcing cable for a flexible endless caterpillar track made of an elastomer. The cable (30) comprises a plurality of strands (32C, 32P) each formed from steel filaments and arranged so as to be wound in a helix in the thickness of the belt. Each strand comprises a core composed of at least three filaments (34), an intermediate layer composed of a plurality of filaments (36) and surrounding the core, and an outer layer composed of a plurality of filaments (38) surrounding the intermediate layer. Application to caterpillar tracks for all-terrain vehicles.
Abstract:
A hybrid cord is presented for use in the reinforcement of elastomers. The hybrid cord is characterized by having a core steel filament, a first layer of one or more nonmetallic filaments which are wrapped about the steel filament in the core, and a second layer of from 4 to 12 steel filaments which are wrapped about the first layer.