Abstract:
A rope-twisting machine for making ropes includes arranged on a base in succession a rotor carrying rope elements, a mandrel rigidly connected to the rotor and having shaping grooves, pressure rollers mounted in a casing, the axes of the pressure rollers being arranged in planes passing through the axis of rotation of the rotor. The casing is disposed concentrically relative to the mandrel, the casing and the rotor being capable of relative rotation.
Abstract:
A hauling cord (L) for pulling an electric power line or the like cable into a conduit has an elongate linear body (1) that is typically a monofilament of a thermoplastic resin. The cord is of a regular or irregular cross section with one or more helical ridges (2) that extend around, along and integral with the linear body between opposite ends of the linear body. The helical ridges are formed by drawing and twisting a raw material of the linear body, and may have either of or both the opposite ends made thinner and/or twisted stronger than the remaining portion so that the pitch between the adjacent ridges is reduced. The cross section renders the cord lighter in weight and more slender, and nevertheless its compression strength and tensile strength are improved.
Abstract:
A metal cord has cylindrical layers formed of an internal layer, an intermediate layer, and an external layer. The in internal layer includes M threads. The intermediate layer includes N threads wound in a helix around the internal layer. The external layer includes P threads wound in a helix around the intermediate layer. An inter-thread distance, D2, between the threads of the intermediate layer is greater than or equal to 25 μm. An inter-thread distance, D3, between the threads of the external layer is greater than or equal to 25 μm.
Abstract:
In a method of manufacturing a stranded conductor for use in an electric power cable, the cross-sectional shapes of wires being drawn towards or through a rotatably driven lay plate by which the wires are laid helically in a layer around the axis of the conductor are so modified that, on emerging from the lay plate and passing into at least one die downstream of the lay plate, the wires of modified cross-sectional shape fit tightly together and, if present, around a central wire or a preceding layer of helically applied wires. The wires of each layer preferably are initially of the same cross-sectional shape and size as one another, e.g. approximately circular, and, preferably, the modified cross-sectional shapes imparted to the wires of each layer are the same as one another, e.g. approximating to a sector of an annulus. No compacting of the wires is required in the die or dies and, as a consequence, a capstan drawing the wires through the die or dies is not subjected to a undesirable load.
Abstract:
A method of manufacturing an assembled conductor includes: arranging a plurality of peripheral wires having anisotropic cross-sectional shapes around a central wire; bundling the central wire and the peripheral wires that have been arranged, to form a conducting wire bundle; and rolling the conducting wire bundle to form the assembled conductor. The arranging includes a bending process for bending the plurality of peripheral wires in directions along imaginary lines that extend radially relative to an axis of the central wire on an imaginary plane intersecting the axis of the central wire.