Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
A filter wheel and a spectrometer including the filter wheel are disclosed. The filter wheel has a first support structure on which a first plurality of filters are mounted and a second support structure on which at least one filter is provided. A radiation source generates a radiation beam, and a beam splitter splits the radiation beam into a first detection path and a second detection path. The first plurality of filters are selectively movable into the first detection path. The at least one filter on the second support structure is arranged to be disposed in the second detection path. The spectrometer includes a first radiation detector that detects radiation that passes through the selected filter in the first detection path, and a second radiation detector that detects radiation passing through the filter in the second detection path.
Abstract:
A spectroscopic sensor that applies lights in a wavelength band containing plural wavelengths to an object and spectroscopically separates reflected lights or transmitted lights from the object using plural light band-pass filters that transmit the respective specific wavelengths and plural photosensor parts to which corresponding transmitted lights are input based on output results of independent photosensors. The spectroscopic sensor may be integrated in a semiconductor device or module by integration using a semiconductor process and downsizing may be realized.
Abstract:
Multiport multispectral portable imaging systems having at least two cameras with charge-coupled device sensors, a front lens unit, at least two rear lens units, a beamsplitter, and at least two bandpass filters is used to detect contaminants on food.
Abstract:
Disclosed are an apparatus and a method for analyzing milk in a field, capable of analyzing the quality of milk by rapidly and easily examining components of milk in a field, other than a laboratory. To manage the quality of milk, a monochromator using an interference filter having different wavelength bands is employed to the apparatus for analyzing milk, and the amount of milk samples used at one time is increased, so components of milk are simultaneously examined. The apparatus for analyzing milk has a portable structure, so the components of milk are simply, rapidly and easily determined in the field, and the apparatus for analyzing milk is inexpensive as compared with existing apparatuses, thereby increasing the productivity.
Abstract:
An optical system is disclosed that can be used for fluorescence filtering for molecular imaging. In one preferred embodiment, a source subsystem is disclosed comprising a light source and a first set of filters designed to pass wavelengths of light in an absorption band of a fluorescent material. A detector subsystem is also disclosed comprising a light detector, imaging optics, a second set of filters designed to pass wavelengths of light in an emission band of the fluorescent material, and an aperture located at a front focal plane of the imaging optics. A telecentric space is created between the light detector and the imaging optics, such that axial rays from a plurality of field points emerge from the imaging optics parallel to each other and perpendicular to the second set of filters.
Abstract:
A compact high-definition hyperspectral imaging system (HDHIS) for light aircraft remote sensing to perform concurrent pushbroom hyperspectral imaging and high-resolution photographic imaging. The HDHIS comprises a sensor head having a hyperspectral scanner and a CCD digital camera. An airborne computer interfaces with the sensor head to provide data acquisition including hyperspectral quick view images and control functions. An alternative embodiment includes combining the HDHIS with a computerized airborne multi-camera imaging system (CAMIS) which comprises four progressive scan (CCD) cameras attached to a set of interchangeable, interference filters, to provide a triple spectral imaging system that can be operated by one person on a light aircraft.
Abstract:
An spectrophotometer system (100) separately images rays of optical radiation in a plurality of wavelength bands from a distant object into a plurality of distinct wavelengths simultaneously and projects the separate images upon a detector (124). Each distinct wavelength is within a corresponding one of the plurality of wavelength bands. The apparatus includes a lens system comprising an objective lens (104), first and second field lenses (108, 116), a collimating lens (118), and a re-imaging lens (120) all disposed coaxially with respect to each other along an optic axis (110). The objective lens (104) and the first field lens (108) coact to cause rays of optical radiation emitted by the object to form an image at a first focal plane. An aperture (112) at the first focal plane passes rays of the optical radiation corresponding to a predetermined portion of the object. The second field lens (116) causes rays from the image at the first focal plane to form an image at a second focal plane. The collimating lens (118) causes rays entering the collimating lens (118) to be parallel leaving the collimating lens (118). The re-imaging lens (120) forms an image on the detector (124). A filter (114) between the first field lens (108) and the first focal plane passes rays of the optical radiation within the wavelength bands and suppresses optical radiation in wavelengths outside the wavelength bands. A prism system (122) is disposed coaxially along the optic axis near the second focal plane. A first prism (130) causes light in a first one of the plurality of wavelength bands to appear in a first location. A second prism (132) causes light in a second one of the plurality of wavelength bands to appear in a second location.
Abstract:
A spot of a sample is illuminated by laser light. Raman scattered light is collimated in a parallel beam by a microscope objective, and analyzed by a dispersive or non-dispersive analyzer (such as a diffraction grating or filter). A lens then focuses the Raman scattered light onto a two-dimensional photodetector array in the form of a charge-coupled device (CCD). A confocal technique is described to eliminate light scattered from outside the focal plane of the objective. This may be done by binning together a few pixels of the CCD at the focal point of the lens, or by image processing techniques in a computer.
Abstract:
A sample placed under a microscope is illuminated by light from a laser beam. Raman scattered light is passed back via a dichroic filter to various optical components which analyse the Raman spectrum, and thence to a CCD detector. The optical components for analysing the Raman spectrum include tunable dielectric filters in a filter wheel; a Fabry-Perot etalon; and a diffraction grating. These various components may be swapped into the optical path as desired, for example using movable mirrors, enabling the apparatus to be used very flexibly for a variety of different analysis procedures. Various novel analysis methods are also described.