Abstract:
A rotor includes: a circular rotor core; and a plurality of θ magnets. The θ magnets are contained in a magnet holding sections such that the same magnetic pole of one magnet as that of another magnet adjacent to said one magnet faces the same magnet pole of the adjacent magnet in circumferential directions of the rotor core. Given that the number of magnetic poles of the rotor is denoted by P, the maximum outside diameter of the rotor core is denoted by Dr [mm], and the thickness of the plate-like magnet in a circumferential direction of the rotor core is denoted by Lm [mm], the following inequality (2) is satisfied: 0.665×10−4×P2−0.28×10−2×P+0.577×10−1
Abstract:
The invention relates to a magnetic coupling assembly for associating a first rotatable shaft to a second rotatable shaft, the magnetic coupling assembly comprising:—a rotatable first hub to be connected to the first rotatable shaft, the first hub comprising a magnet rotor comprising a plurality of permanent magnets;—a rotatable second hub to be connected to the second rotatable shaft, the second hub comprising a conductor housing comprising at least one conductor positioned at a distance from a side of the magnet rotor facing the second rotatable shaft; wherein at least one of the second hub and first hub comprises an inner hub part and an outer hub part, wherein the hub parts are configured to allow the outer hub part to be axially movable over the inner hub part to adjust the axial position of the at least one conductor relative to the magnet rotor.
Abstract:
A permanent magnet rotary electric machine includes: a stator in which a plurality of teeth and a plurality of slots are formed on an inner periphery of a cylindrical stator core, and a winding wire is wound around the teeth so as to be disposed in the slots; and a rotor disposed in a hollow portion of the stator with an air gap between the rotor and the stator. In the rotor, 2n or more (n is a natural number equal to or larger than 1) radial projections are provided on an outer periphery of a rotor core, and a ferrite magnet is disposed between adjacent projections. A radial height of the projection is less than a thickness of middle of the ferrite magnet.
Abstract:
A magnet assembly for a rotor assembly of an electromechanical transducer includes a magnet component and a thermal insulating structure. The magnet component has a permanent magnet material. The thermal insulation structure covers at least a part of a surface of the magnet component for thermally decoupling the magnet component from heat being generated within electromechanical transducer. In an example embodiment, the electromechanical transducer is a generator of a wind turbine.
Abstract:
A magnet 34 for the rotating shaft (first magnet, second magnet) is installed on the extended portion of the rotating shaft 33b in the gear housing 41, and Hall ICs 65a to 65c for the rotating shaft (first sensor, second sensor) are formed on the control board 60 inside the gear housing 41 so as to face the magnet 34 for the rotating shaft. The Hall ICs 65a to 65c for the rotating shaft are adapted to detect the rotation position of the rotating shaft 33b relative to the stator 32, that is, the rotation position of the rotor 33 relative to the stator 32, and the Hall ICs 65a to 65c for the rotating shaft are adapted to detect the rotation number of the rotating shaft 33b.
Abstract:
A symmetrical cooling system for an electric rotor machine that includes a passageway that is positioned between portions of the stator, and which provides a pathway for a cooling medium. Stator ducts positioned within the stator, or portions thereof, are in fluid communication with the passageway. Cooling medium may flow through the suitor ducts from the passageway to ends of the stator so that the cooling medium only travels along a portion of the overall axial length of the stator. The symmetrical cooling system also includes an air gap dial is positioned between the stator and the rotor, and which receives cooling medium from the passageway at a midsection of the air gap. Cooling medium received at the midsection of the air gap may then flow towards either first or second ends of the stator.
Abstract:
In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge and an inner edge defining a central opening. The rotor core includes a radius R, at least one pole, and at least one radial aperture extending radially though the rotor core from the outer edge to a predetermined depth less than the radius. The at least one radial aperture is configured to receive the at least one permanent magnet. The rotor further includes at least one protrusion extending into the at least one radial aperture, the at least one protrusion positioned substantially along a bottom of the at least one radial aperture and configured to facilitate retention of the at least one permanent magnet within the at least one radial aperture.
Abstract:
A permanent magnet motor is provided in which, in flanges each provided in a plurality of teeth, lateral side portions of the flanges oppose to lateral side portions the flanges being provided in adjacent teeth and protruding in a circumferential direction of a stator core; when a height in the lateral side portion of the flanges in a radial direction of the stator core is defined as “h,” and the length of a magnetic air gap is defined as “g,” the relationship “1≦h/g≦2” is held; and also, when a circumferential distance between opposing faces of the flanges being adjacent to each other is defined as “a,” the relationship “a/g≧0.2” is satisfied.
Abstract translation:提供一种永久磁铁马达,其中在每个设置有多个齿的凸缘中,凸缘的横向侧部与侧向侧面相对,凸缘设置在相邻的齿中并沿定子芯的圆周方向突出; 当定子铁心的径向方向上的凸缘的侧面侧的高度被定义为“h”,并且将磁性气隙的长度定义为“g”时,关系式“1≦̸ h / g& 2“举行; 并且当法兰的相对面彼此相邻的周向距离被定义为“a”时,满足关系“a /g≥0.2”。
Abstract:
A permanent magnet bearing supports part of thrust loads of a vertical shaft induction motor, or the thrust loads of other types of rotation machinery regardless of shaft rotational axis orientation, in parallel with a lubricated mechanical bearing. The permanent magnet has a stationary magnet portion coupled to a bearing bracket and a rotating portion adapted for coupling to a rotor shaft. The permanent magnet bearing exerts a directional magnetic force that generates a preload support force on the rotor shaft that is selectively varied by varying air gap between the stationary and rotating magnet portions. Air gap between the magnet portions is varied with an air gap adjustment mechanism. The gap adjustment mechanism may be coupled to a control system that in some embodiments causes the permanent magnet bearing to vary the air gap based on external load applied on the motor.
Abstract:
Provided is a bearing electrolytic corrosion countermeasure technology achieving excellent reliability without increasing the number of components. A rotating electrical machine of the invention includes: a stator; a shaft penetrating the stator; a rotor facing the stator via a gap in an axial direction; and a housing holding the stator, in which: the stator includes, in a circumferential direction, a plurality of stator units each of which includes a grounded first conductive member, a core, a bobbin, and a winding wound around the bobbin; the bobbin has a flange portion provided between the winding and the rotor; the first conductive member is provided between the flange portion and the rotor and is in contact with the core, and, in a case where projection is performed in the axial direction, the winding is provided such that a projected portion of a part of the winding wound around the bobbin is within a projected portion of the flange portion; and the first conductive member is provided such that the projected portion of the first conductive member is included in the projected portion of the flange portion.