Abstract:
A method, apparatus, and energy metering system obtains mains samples of a mains power line signal, performs non-white noise (NWN) filtering of the mains power line signal, obtains adjustable clock source samples of an adjustable clock signal of an adjustable clock oscillator, determines a difference based on the mains samples and the adjustable clock source samples, adjusts an adjustable clock source frequency of the adjustable clock oscillator based on the difference, and applies the adjustable clock source frequency to an analog to digital converter (ADC) to determine a conversion rate of the ADC.
Abstract:
A sampling circuit includes a continuous section which is a circuit for transmitting a continuous signal; a digital section for transmitting a signal which is sampled and quantized; and a sampling and holding section for transmitting a signal which is sampled but not quantized between the continuous section and the digital section. The sampling and holding section includes capacitors for accumulating charge generated by an input signal and plural switches for accumulating the charge in the capacitors. The plural switches receive plural clock signals having different operation timings and perform an ON/OFF operation in response to the supplied clock signals.
Abstract:
A sampling circuit includes a continuous section which is a circuit for transmitting a continuous signal; a digital section for transmitting a signal which is sampled and quantized; and a sampling and holding section for transmitting a signal which is sampled but not quantized between the continuous section and the digital section. The sampling and holding section includes capacitors for accumulating charge generated by an input signal and plural switches for accumulating the charge in the capacitors. The plural switches receive plural clock signals having different operation timings and perform an ON/OFF operation in response to the supplied clock signals.
Abstract:
An A/D conversion unit performs an A/D conversion operation twice during a hold period of an analog value. In a first conversion operation, the A/D conversion unit compares the analog value with a first reference voltage and outputs a comparison result as first converted data. In a second conversion operation, the A/D conversion unit compares the analog value with a second reference voltage and outputs a comparison result as second converted data. The second reference voltage is a voltage obtained by adding or subtracting a minimum resolution voltage to or from the first reference voltage. A digital processing unit averages errors of the first and second converted data by digital processing to detect an A/D conversion error, and feeds back a detection result to the A/D conversion unit as a control value to perform voltage control.
Abstract:
A method and system utilized with an analog to digital converter is disclosed. The method and system comprise providing a first conversion on an input signal. In the first conversion, an offset error is added to the input signal to provide a first result. The method and system further includes providing a second conversion on the input signal. In the second conversion, an offset error is subtracted from the input signal to provide a second result. The first and second results are then combined to substantially remove the offset error. A system and method in accordance with the present invention compensates for the accumulated offset error over many samples, thereby achieving much higher accuracy in the offset error compensation.
Abstract:
An interference reduction device includes an analog to digital converter, a serial to parallel converter, a first FIR filter, a second FIR filters, a flip-flop, a decision unit, and a selector. The analog to digital converter performs A/D conversion. The serial to parallel converter performs a session of distribution processing in which a digital signal obtained by the A/D conversion. The first FIR outputs the signal after a filter operation at the desired output frequency. The second FIR filters each perform a filter operation, also each output the generated signals at the desired output frequency. The flip-flop samples the inputted digital signal. The decision unit decides which one of the FIR filters has the smallest influence of interference of the input digital signal. The selector outputs one of the signals outputted by the FIR filters.
Abstract:
A method for operating an N-bit SAR ADC as a greater than N-bit resolution SAR ADC includes the steps of taking a plurality of samples for each analog value being converted to a digital value by the SAR ADC. A portion of an LSB is added to all but one of the plurality of samples. The plurality of samples are then accumulated and output as a digital value. The digital value has a resolution greater than the N-bit resolution of the SAR ADC.
Abstract:
An interference reduction device includes an analog to digital converter, a serial to parallel converter, a first FIR filter, a second FIR filters, a flip-flop, a decision unit, and a selector. The analog to digital converter performs A/D conversion. The serial to parallel converter performs a session of distribution processing in which a digital signal obtained by the A/D conversion. The first FIR outputs the signal after a filer operation at the desired output frequency. The second FIR filters each perform a filter operation, also each output the generated signals at the desired output frequency. The flip-flop samples the inputted digital signal. The decision unit decides which one of the FIR filters has the smallest influence of interference of the input digital signal. The selector outputs one of the signals outputted by the FIR filters.
Abstract:
A method for operating an N-bit SAR ADC as a greater than N-bit resolution SAR ADC includes the steps of taking a plurality of samples for each analog value being converted to a digital value by the SAR ADC. A portion of an LSB is added to all but one of the plurality of samples. The plurality of samples are then accumulated and output as a digital value. The digital value has a resolution greater than the N-bit resolution of the SAR ADC.
Abstract:
A process and apparatus for generating an output signal whose frequency varies according to a modulation scheme, the process including the steps of providing a dither generator for receiving a first input signal representative of a clock frequency and for generating, according to the modulation scheme, a dithered output signal representative of the first signal at a dithered frequency; providing a DSP for receiving the following input signals: the signal at the dithered frequency and a second signal representative of a clock frequency, the DSP adapted to generate a processed output signal representative of the maximum frequency of the second signal; wherein the modulation scheme has a periodic ultrasonic modulating wave.