Abstract:
A battery packaging arrangement. The battery packaging arrangement includes a first base configured to be fixedly coupled to a frame of a vehicle, a second base moveable with respect to the first base, and a plurality of cooling columns inter-disposed between the first base and the second base. Each of the plurality of cooling columns includes a plurality of receiving surfaces for receiving a corresponding plurality of battery cells. Each of the plurality of cooling columns is further configured to deform when the second base in response to a force moves towards the first base.
Abstract:
A vehicle electrical system including a battery, the terminals of which supply positive and negative power rails, the battery being connected to one or more vehicle devices to supply power or charging thereto. The devices include capacitors. The system also includes at least one heating device and a switch to allow capacitor discharge to flow through the heating device.
Abstract:
A method for managing energy to a transport climate control system from a vehicle electrical system is provided. The vehicle electrical system includes a vehicle power network and an auxiliary power network connected to a transport climate control load network via a DC regulated bus. The method includes monitoring a vehicle voltage of the vehicle power network and determining whether the vehicle power network requires holdover assistance based on the vehicle voltage. Also, the method includes the bus sending vehicle power energy generated by the vehicle power network to the transport climate control load network without assistance of the auxiliary power network when the controller determines that the vehicle power network has sufficient power capacity available, and the bus sending the vehicle power energy and auxiliary power energy stored by the auxiliary power network to the transport climate control load network when the controller determines that the vehicle power network requires holdover assistance.
Abstract:
A vehicle assembly includes, among other things, a power converter, a charge port assembly, and a thermal conduit that conveys thermal energy from the power converter to the charge port assembly. A charge port heating method includes, among other things, generating thermal energy with a power converter of a vehicle, and directing the thermal energy from the power converter to a charge port assembly using a thermal conduit.
Abstract:
The invention relates to an electrical device for melting snow and ice that has accumulated on the surface of a. vehicle. During inclement weather, snow, sleet, rain or hail accumulate on all exposed surfaces of the automobile, in particular on the flat surfaces, such as on the roof the hood, the trunk, or a truck bed of a vehicle. These areas of snow coverage are relatively large and significantly high off the ground, presenting a challenge to clean in terms of time and effort. Frequently, the owners of the vehicles need to use their automobiles early in the morning, when snow or ice that has accumulated over night is at its hardest. Since it is unsafe, and sometimes unlawful, to operate a vehicle that has not been properly snow dusted and deiced, cleaning must be effectuated before a vehicle can be driven on the roads.
Abstract:
A vehicle includes a traction battery configured to be coupled to a power network that is controlled by a grid management system. The vehicle further includes a controller. The controller charges the traction battery and activates vehicle loads based on a request from the grid management system to consume an amount of power from the power network. When the traction battery is fully charged, one or more vehicle loads are activated to consume the amount of power. When a charge power limit of the traction battery is greater than or equal to the amount of power requested, the traction battery is charged to consume the amount of power requested.
Abstract:
A warm-up apparatus for a vehicle including a system which charges a battery by using an external power supply is provided. The warm-up apparatus includes a heater for warming up, a current detector, a voltage detector and a resistance changer. The heater is mounted in the vehicle and produces heat by receiving electric power from the external power supply. The current detector detects an allowable current value of the external power supply. The voltage detector detects an output voltage value of the external power supply. The resistance changer changes an electric resistance value of the heater based on the allowable current value detected by the current detector and the output voltage value detected by the voltage detector.
Abstract:
The present invention provides an apparatus and method for air conditioning a vehicle interior using a battery charge control of an electric vehicle, which can improve the cooling/heating performance by setting a start-up time of the electric vehicle and supplying heat generated from a battery during charge and its latent heat to the vehicle interior during initial start-up of the vehicle.
Abstract:
The invention relates to a method for operating an electric add-heater in a motor vehicle having at least one rechargeable electrochemical cell as a power source and an electric generator which is connected with the cell and is driven by a drive engine of the motor vehicle and by which an electric add-heater can be supplied with current when the drive engine is running.It is provided according to the invention that in case of need the add-heater can be supplied with current even when no current is supplied by the generator, by switching over the add-heater to at least one electrochemical cell as a power source, monitoring the charging condition of at least one electrochemical cell, and interrupting the power supply of the electric add-heater realized by the at least one monitored electrochemical cell again when the charging condition of the at least one monitored electrochemical cell has dropped below a lower limit value.
Abstract:
The invention relates to a method for operating an electric add-heater in a motor vehicle having at least one rechargeable electrochemical cell as a power source and an electric generator which is connected with the cell and is driven by a drive engine of the motor vehicle and by which an electric add-heater can be supplied with current when the drive engine is running.It is provided according to the invention that in case of need the add-heater can be supplied with current even when no current is supplied by the generator, by switching over the add-heater to at least one electrochemical cell as a power source, monitoring the charging condition of at least one electrochemical cell, and interrupting the power supply of the electric add-heater realized by the at least one monitored electrochemical cell again when the charging condition of the at least one monitored electrochemical cell has dropped below a lower limit value.