Abstract:
A semiconductor electro-optical phase shifter may include a substrate, an optical waveguide segment (12) formed on the substrate, and first and second zones of opposite conductivity types configured to form a first bipolar junction perpendicular to the substrate. The phase shifter may also include a dynamic control structure configured to reverse bias the first junction and a static control structure configured to direct a quiescent current in the second zone, parallel to the first junction.
Abstract:
A semiconductor electro-optical phase shifter may include an optical action zone configured to be inserted in an optical waveguide, and a bipolar transistor structure configured so that, in operation, collector current of the bipolar transistor structure crosses the optical action zone perpendicular to the axis of the optical waveguide.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.
Abstract:
A resistive ladder has first, second and third resistors coupled in series between first and second voltage terminals. A first node of the first resistor is coupled to the first voltage terminal and a first node of the third resistor is coupled to the second voltage terminal. A voltage selection unit has a first input coupled to a first node of the second resistor and a second input coupled to a second node of the second resistor and is adapted to selectively couple one of the first and second inputs to an output node of said resistive ladder. The resistive ladder also includes a first switch coupled between a second node of the third resistor and the second voltage terminal.
Abstract:
The present disclosure concerns a high frequency imager including a pixel matrix, each pixel including a high frequency oscillator, a transmission line positioned at a distance from an active surface of the imager smaller than the operating wavelength of the oscillator, a first end of the line being coupled to the oscillator, and a read circuit coupled to a second end of the line.
Abstract:
A chain of switches is connected between a first power supply line coupled to a first voltage and a second power supply line coupled to the sector. These switches are controllable by a control signal. The control signal is propagated from a first end of the first chain towards a second end of the first chain without control of the switches during this first propagation. The control signal is then propagated in the reverse direction from the second end towards the first end with a control of the switches during this second propagation starting from a group of at least one switch situated at the second end. There is a detection of the arrival of the control signal at the first end of the chain at the end of its propagation in the reverse direction.
Abstract:
A substrate of the silicon-on-insulator type is formed from an initial substrate of the silicon-on-insulator type having a semiconductor film on top of a buried insulating layer itself situated on top of a carrier substrate. A localized modification of a thickness of the semiconductor film is made so as to form a semiconductor film having different thicknesses in different regions.
Abstract:
A Silicon On Insulator current source array includes input control for receiving a control voltage, a first reference input for receiving a first reference voltage, and a second reference input for receiving a second reference voltage. A chain of several Silicon On Insulator MOS transistors, of the same type, have control electrodes all connected to the input control, first conduction electrodes are all connected to the first reference input, and second conduction electrodes are respectively connected to the second reference input through several load circuits respectively configured to be traversed by several currents when the several transistors are ON upon application of the control voltage on the input control. An input bias is coupled to a semiconductor well located below an insulating buried layer located below the chain of transistors for receiving a biasing voltage difference.
Abstract:
An ESD protection device for an electro-optical device may include an optical waveguide segment being in semiconductor material and including a central zone of a first conductivity type, and first and second wings of a second conductivity type different from the first conductivity type and being integral with the central zone. The ESD protection device may include a first conduction terminal on the first wing for defining a first protection terminal, a second conduction terminal on the second wing for defining a second protection terminal, and a resistive contact structure of the first conductivity type having a transverse arm integral with the central zone, and an end in ohmic contact with the first conduction terminal, the resistive contact structure being electrically insulated from the first wing.
Abstract:
A method and corresponding device for processing a frequency-modulated analog signal are disclosed. The signal includes a number of symbols belonging to a set of M symbols respectively associated with at least one frequency of a set of M frequencies. The method includes a phase of reading each symbol of the signal that includes a sampling of a signal portion corresponding to the duration of a symbol and delivering N samples (M being less than N). M individual discrete Fourier transform processing operations are performed on the N samples. Each individual processing operation is associated with each of the frequencies. The M individual processing operations deliver M processing results. The value of the symbol can be determined from the M processing results.