In vitro epithelial models comprising lamina propria-derived cells

    公开(公告)号:US11059041B2

    公开(公告)日:2021-07-13

    申请号:US17024221

    申请日:2020-09-17

    申请人: EMULATE, Inc.

    摘要: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.

    In vitro epithelial models comprising lamina propria-derived cells

    公开(公告)号:US10828638B2

    公开(公告)日:2020-11-10

    申请号:US15819435

    申请日:2017-11-21

    申请人: EMULATE, Inc.

    摘要: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.