Abstract:
A power electronic package includes: first and second high thermal conductivity insulating non-planar substrates; and multiple semiconductor chips and electronic components between the substrates. Each substrate includes multiple electrical insulator layers and patterned electrical conductor layers connecting to the electronic components, and further includes multiple raised regions or posts, which are bonded together so that the substrates are mechanically and electrically connected. The number, arrangement, and shape of the raised regions or posts are adjusted to have mechanical separation between the substrates. The electrical conductor layers are separated and isolated one another so that multiple electric circuits are provided on at least one of the substrates.
Abstract:
Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n− drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.
Abstract:
A gas-sensing semiconductor device 1′ is fabricated on a silicon substrate 2′ having a thin silicon dioxide insulating layer 3′ in which a resistive heater 6 made of doped single crystal silicon formed simultaneously with source and drain regions of CMOS circuitry is embedded. The device 1′ includes a sensing area provided with a gas-sensitive layer 9′ separated from the heater 6′ by an insulating layer 4′. As one of the final fabrication steps, the substrate 2′ is back-etched so as to form a thin membrane in the sensing area. The heater 6′ has a generally circular-shaped structure surrounding a heat spreading plate 16′, and consists of two sets 20′, 21′ of meandering resistors having arcuate portions nested within one another and interconnected in labyrinthine form. The fabrication of the heater at the same time as the source and drain regions of CMOS circuitry is particularly advantageous in that the gas-sensing semiconductor device is produced without requiring any fabrication steps in addition to those already employed in the IC processing apart from a post-CMOS back etch and deposition of the gas-sensitive layer. The circular design is advantageous in that it is the best solution to minimise the size of the membrane at fixed power loss and heated area.
Abstract:
In a reverse conducting semiconductor device, which forms a composition circuit, a positive voltage that is higher than a positive voltage of a collector electrode may be applied to an emitter electrode. In this case, in a region of the reverse conducting semiconductor device in which a return diode is formed, a body contact region functions as an anode, a drift contact region functions as a cathode, and current flows from the anode to the cathode. When a voltage having a lower electric potential than the collector electrode is applied to the trench gate electrode at that time, p-type carriers are generated within the cathode and a quantity of carriers increases within the return diode. As a result, a forward voltage drop of the return diode lowers, and constant loss of electric power can be reduced. Electric power loss can be reduced in a power supply device that uses such a composition circuit in which a switching element and the return diode are connected in reverse parallel.
Abstract:
A gas-sensing semiconductor device 1′ is fabricated on a silicon substrate 2′ having a thin silicon dioxide insulating layer 3′ in which a resistive heater 6 made of doped single crystal silicon formed simultaneously with source and drain regions of CMOS circuitry is embedded. The device 1′ includes a sensing area provided with a gas-sensitive layer 9′ separated from the heater 6′ by an insulating layer 4′. As one of the final fabrication steps, the substrate 2′ is back-etched so as to form a thin membrane in the sensing area. The heater 6′ has a generally circular-shaped structure surrounding a heat spreading plate 16′, and consists of two sets 20′, 21′ of meandering resistors having arcuate portions nested within one another and interconnected in labyrinthine form. The fabrication of the heater at the same time as the source and drain regions of CMOS circuitry is particularly advantageous in that the gas-sensing semiconductor device is produced without requiring any fabrication steps in addition to those already employed in the IC processing apart from a post-CMOS back etch and deposition of the gas-sensitive layer. The circular design is advantageous in that it is the best solution to minimise the size of the membrane at fixed power loss and heated area.
Abstract:
A gas-sensing semiconductor device is fabricated on a silicon substrate having a thin silicon oxide insulating layer in which a resistive heater made of a CMOS compatible high temperature metal is embedded. The high temperature metal is tungsten. The device includes at least one sensing area provided with a gas-sensitive layer separated from the heater by an insulating layer. As one of the final fabrication steps, the substrate is back-etched so as to form a thin membrane in the sensing area. Except for the back-etch and the gas-sensitive layer formation, that are carried out post-CMOS, all other layers, including the tungsten resistive heater, are made using a CMOS process employing tungsten metallisation. The device can be monolithically integrated with the drive, control and transducing circuitry using low cost CMOS processing. The heater, the insulating layer and other layers are made within the CMOS sequence and they do not require extra masks or processing.
Abstract:
A power semiconductor device has an active region that includes a drift region. At least a portion of the drift region is provided in a membrane which has opposed top and bottom surfaces. In one embodiment, the top surface of the membrane has electrical terminals connected directly or indirectly thereto to allow a voltage to be applied laterally across the drift region. In another embodiment, at least one electrical terminal is connected directly or indirectly to the top surface and at least one electrical terminal is connected directly or indirectly to the bottom surface to allow a voltage to be applied vertically across the drift region. In each of these embodiments, the bottom surface of the membrane does not have a semiconductor substrate positioned adjacent thereto.
Abstract:
This invention is generally concerned with power semiconductors such as power MOS transistors, insulated gate by bipolar transistors (IGBTs), high voltage diodes and the like, and methods for their fabrication. A power semiconductor, the semiconductor comprising: a power device, said power device having first and second electrical contact regions and a drift region extending therebetween; and a semiconductor substrate mounting said device; and wherein said power semiconductor includes an electrically insulating layer between said semiconductor substrate and said power device, said electrically insulating layer having a thickness of at least 5 μm.
Abstract:
A power semiconductor device has an active region that includes a drift region. At least a portion of the drift region is provided in a membrane which has opposed top and bottom surfaces. In one embodiment, the top surface of the membrane has electrical terminals connected directly or indirectly thereto to allow a voltage to be applied laterally across the drift region. In another embodiment, at least one electrical terminal is connected directly or indirectly to the top surface and at least one electrical terminal is connected directly or indirectly to the bottom surface to allow a voltage to be applied vertically across the drift region. In each of these embodiments, the bottom surface of the membrane does not have a semiconductor substrate positioned adjacent thereto.
Abstract:
A power semiconductor device has an active region that includes a drift region. At least a portion of the drift region is provided in a membrane which has opposed top and bottom surfaces. In one embodiment, the top surface of the membrane has electrical terminals connected directly or indirectly thereto to allow a voltage to be applied laterally across the drift region. In another embodiment, at least one electrical terminal is connected directly or indirectly to the top surface and at least one electrical terminal is connected directly or indirectly to the bottom surface to allow a voltage to be applied vertically across the drift region. In each of these embodiments, the bottom surface of the membrane does not have a semiconductor substrate positioned adjacent thereto.