Insulated gate bipolar transistor device comprising a depletion-mode MOSFET
    42.
    发明授权
    Insulated gate bipolar transistor device comprising a depletion-mode MOSFET 有权
    绝缘栅双极晶体管器件包括耗尽型MOSFET

    公开(公告)号:US07968940B2

    公开(公告)日:2011-06-28

    申请号:US11863231

    申请日:2007-09-27

    Applicant: Florin Udrea

    Inventor: Florin Udrea

    Abstract: Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n− drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.

    Abstract translation: 具有两个栅极的双栅极IGBT指的是其中第二栅极用于控制空穴电流的阴极。 在导通状态下,可以大大抑制空穴电流。 在切换期间,允许空穴电流流过第二通道。 结合具有预形成的空穴通道的耗尽型p沟道MOSFET,当0V或者低于特定阈值电压的正电压被施加在第二栅极和阴极之间时,其导通的电压不被用于p沟道栅极的负电压 。 通过增加n阱的掺杂和宽度降低碱运输因子,或者通过减少深阱的掺杂降低注入效率,提供通过积极收集的空穴量的主动控制。 器件至少包括阳极,阴极,半导体衬底,n-漂移区,第一和第二栅极,n +阴极区域; p +阴极短,深p阱,n阱和预形成的孔道。

    Gas-sensing semiconductor devices
    43.
    发明授权
    Gas-sensing semiconductor devices 有权
    气敏半导体器件

    公开(公告)号:US07849727B2

    公开(公告)日:2010-12-14

    申请号:US12065296

    申请日:2006-07-12

    CPC classification number: G01N33/0047 G01N27/14 G01N33/0031

    Abstract: A gas-sensing semiconductor device 1′ is fabricated on a silicon substrate 2′ having a thin silicon dioxide insulating layer 3′ in which a resistive heater 6 made of doped single crystal silicon formed simultaneously with source and drain regions of CMOS circuitry is embedded. The device 1′ includes a sensing area provided with a gas-sensitive layer 9′ separated from the heater 6′ by an insulating layer 4′. As one of the final fabrication steps, the substrate 2′ is back-etched so as to form a thin membrane in the sensing area. The heater 6′ has a generally circular-shaped structure surrounding a heat spreading plate 16′, and consists of two sets 20′, 21′ of meandering resistors having arcuate portions nested within one another and interconnected in labyrinthine form. The fabrication of the heater at the same time as the source and drain regions of CMOS circuitry is particularly advantageous in that the gas-sensing semiconductor device is produced without requiring any fabrication steps in addition to those already employed in the IC processing apart from a post-CMOS back etch and deposition of the gas-sensitive layer. The circular design is advantageous in that it is the best solution to minimise the size of the membrane at fixed power loss and heated area.

    Abstract translation: 在具有薄的二氧化硅绝缘层3'的硅衬底2'上制造气体感测半导体器件1',其中嵌入与CMOS电路的源极和漏极区域同时形成的由掺杂单晶硅制成的电阻加热器6。 装置1'包括具有通过绝缘层4'与加热器6'分离的气敏层9'的感测区域。 作为最终制造步骤之一,衬底2'被反蚀刻以在感测区域中形成薄膜。 加热器6'具有围绕散热板16'的大致圆形结构,并且由具有彼此嵌套并且以迷宫形式互连的弓形部分的曲折电阻器的两组20',21'组成。 与CMOS电路的源极和漏极区域同时地制造加热器是特别有利的,因为除了在后处理中已经用于IC处理中的那些之外,制造气体感测半导体器件不需要任何制造步骤 -CMOS背蚀刻和气敏层的沉积。 圆形设计是有利的,因为它是在固定功率损耗和加热面积下最小化膜尺寸的最佳解决方案。

    POWER SUPPLY DEVICE AND METHOD FOR DRIVING THE SAME
    44.
    发明申请
    POWER SUPPLY DEVICE AND METHOD FOR DRIVING THE SAME 有权
    电源装置及其驱动方法

    公开(公告)号:US20100283514A1

    公开(公告)日:2010-11-11

    申请号:US12677131

    申请日:2008-08-28

    CPC classification number: H01L29/7397 H01L29/0834 H03K17/08128 H03K17/0828

    Abstract: In a reverse conducting semiconductor device, which forms a composition circuit, a positive voltage that is higher than a positive voltage of a collector electrode may be applied to an emitter electrode. In this case, in a region of the reverse conducting semiconductor device in which a return diode is formed, a body contact region functions as an anode, a drift contact region functions as a cathode, and current flows from the anode to the cathode. When a voltage having a lower electric potential than the collector electrode is applied to the trench gate electrode at that time, p-type carriers are generated within the cathode and a quantity of carriers increases within the return diode. As a result, a forward voltage drop of the return diode lowers, and constant loss of electric power can be reduced. Electric power loss can be reduced in a power supply device that uses such a composition circuit in which a switching element and the return diode are connected in reverse parallel.

    Abstract translation: 在形成合成电路的反向导通半导体器件中,可以将高于集电极的正电压的正电压施加到发射极。 在这种情况下,在形成有返回二极管的反向导通半导体器件的区域中,体接触区域用作阳极,漂移接触区域用作阴极,并且电流从阳极流到阴极。 此时当沟槽栅电极施加具有比集电极电位低的电压的电压时,在阴极内产生p型载流子,在返回二极管内增加载流子数量。 结果,返回二极管的正向压降降低,并且可以减少电力的恒定损失。 在使用其中开关元件和返回二极管反向并联连接的组合电路的电源装置中,电力损耗可以减小。

    Gas-Sensing Semiconductor Devices
    45.
    发明申请
    Gas-Sensing Semiconductor Devices 有权
    气体传感半导体器件

    公开(公告)号:US20090126460A1

    公开(公告)日:2009-05-21

    申请号:US12065296

    申请日:2006-07-12

    CPC classification number: G01N33/0047 G01N27/14 G01N33/0031

    Abstract: A gas-sensing semiconductor device 1′ is fabricated on a silicon substrate 2′ having a thin silicon dioxide insulating layer 3′ in which a resistive heater 6 made of doped single crystal silicon formed simultaneously with source and drain regions of CMOS circuitry is embedded. The device 1′ includes a sensing area provided with a gas-sensitive layer 9′ separated from the heater 6′ by an insulating layer 4′. As one of the final fabrication steps, the substrate 2′ is back-etched so as to form a thin membrane in the sensing area. The heater 6′ has a generally circular-shaped structure surrounding a heat spreading plate 16′, and consists of two sets 20′, 21′ of meandering resistors having arcuate portions nested within one another and interconnected in labyrinthine form. The fabrication of the heater at the same time as the source and drain regions of CMOS circuitry is particularly advantageous in that the gas-sensing semiconductor device is produced without requiring any fabrication steps in addition to those already employed in the IC processing apart from a post-CMOS back etch and deposition of the gas-sensitive layer. The circular design is advantageous in that it is the best solution to minimise the size of the membrane at fixed power loss and heated area.

    Abstract translation: 在具有薄的二氧化硅绝缘层3'的硅衬底2'上制造气体感测半导体器件1',其中嵌入与CMOS电路的源极和漏极区域同时形成的由掺杂单晶硅制成的电阻加热器6。 装置1'包括具有通过绝缘层4'与加热器6'分离的气敏层9'的感测区域。 作为最终制造步骤之一,衬底2'被反蚀刻以在感测区域中形成薄膜。 加热器6'具有围绕散热板16'的大致圆形结构,并且由具有彼此嵌套并且以迷宫形式互连的弓形部分的曲折电阻器的两组20',21'组成。 与CMOS电路的源极和漏极区域同时地制造加热器是特别有利的,因为除了在后处理中已经用于IC处理中的那些之外,制造气体感测半导体器件不需要任何制造步骤 -CMOS背蚀刻和气敏层的沉积。 圆形设计是有利的,因为它是在固定功率损耗和加热面积下最小化膜尺寸的最佳解决方案。

    Gas-sensing semiconductor devices
    46.
    发明授权
    Gas-sensing semiconductor devices 有权
    气敏半导体器件

    公开(公告)号:US07495300B2

    公开(公告)日:2009-02-24

    申请号:US11092654

    申请日:2005-03-30

    CPC classification number: G01N27/128

    Abstract: A gas-sensing semiconductor device is fabricated on a silicon substrate having a thin silicon oxide insulating layer in which a resistive heater made of a CMOS compatible high temperature metal is embedded. The high temperature metal is tungsten. The device includes at least one sensing area provided with a gas-sensitive layer separated from the heater by an insulating layer. As one of the final fabrication steps, the substrate is back-etched so as to form a thin membrane in the sensing area. Except for the back-etch and the gas-sensitive layer formation, that are carried out post-CMOS, all other layers, including the tungsten resistive heater, are made using a CMOS process employing tungsten metallisation. The device can be monolithically integrated with the drive, control and transducing circuitry using low cost CMOS processing. The heater, the insulating layer and other layers are made within the CMOS sequence and they do not require extra masks or processing.

    Abstract translation: 气体感测半导体器件制造在具有薄的氧化硅绝缘层的硅衬底上,其中嵌入由CMOS兼容的高温金属制成的电阻加热器。 高温金属是钨。 该装置包括设置有通过绝缘层与加热器分离的气敏层的至少一个感测区域。 作为最终制造步骤之一,衬底被反蚀刻以在感测区域中形成薄膜。 除了在CMOS之后执行的背蚀刻和气敏层形成之外,包括钨电阻加热器在内的所有其它层均采用采用钨金属化的CMOS工艺制成。 该器件可以使用低成本CMOS处理与驱动器,控制和转换电路单片集成。 加热器,绝缘层和其他层是在CMOS序列内制成的,它们不需要额外的掩模或处理。

Patent Agency Ranking