USE OF TITANIUM NITRIDE AS AN ELECTRODE IN NON-FARADAIC ELECTROCHEMICAL CELL
    41.
    发明申请
    USE OF TITANIUM NITRIDE AS AN ELECTRODE IN NON-FARADAIC ELECTROCHEMICAL CELL 审中-公开
    硝酸钛作为电极在非电化学电池中的应用

    公开(公告)号:US20170037467A1

    公开(公告)日:2017-02-09

    申请号:US14818977

    申请日:2015-08-05

    Abstract: A nanopore cell includes a conductive layer. The nanopore cell further includes a titanium nitride (TiN) working electrode disposed above the conductive layer. The nanopore cell further includes insulating walls disposed above the TiN working electrode, wherein the insulating walls and the TiN working electrode form a well into which an electrolyte may be contained. In some embodiments, the TiN working electrode comprises a spongy and porous TiN working electrode that is deposited by a deposition technique with conditions tuned to deposit sparsely-spaced TiN columnar structures or columns of TiN crystals above the conductive layer.

    Abstract translation: 纳米孔单元包括导电层。 纳米孔单元还包括设置在导电层上方的氮化钛(TiN)工作电极。 纳米孔单元还包括设置在TiN工作电极上方的绝缘壁,其中绝缘壁和TiN工作电极形成可包含电解质的阱。 在一些实施例中,TiN工作电极包括通过沉积技术沉积的海绵状和多孔的TiN工作电极,该沉积技术具有被调整以在导电层上方沉积稀疏间隔的TiN柱状结构或TiN晶体柱的条件。

    Nanopore-based sequencing with varying voltage stimulus
    42.
    发明授权
    Nanopore-based sequencing with varying voltage stimulus 有权
    具有不同电压刺激的基于纳米孔的测序

    公开(公告)号:US09557294B2

    公开(公告)日:2017-01-31

    申请号:US14577511

    申请日:2014-12-19

    Abstract: A method of analyzing a molecule in a nanopore is disclosed. A voltage is applied across a nanopore that is inserted in a membrane by coupling the nanopore to a voltage source. The nanopore is decoupled from the voltage source. After the decoupling, a rate of decay of the voltage across the nanopore is determined. A molecule in the nanopore is distinguished from other possible molecules based on the determined rate of decay of the voltage across the nanopore.

    Abstract translation: 公开了分析纳米孔中分子的方法。 通过将纳米孔耦合到电压源,跨越插入膜中的纳米孔施加电压。 纳米孔与电压源分离。 在解耦之后,确定纳米孔上电压的衰减速率。 基于确定的纳米孔上的电压衰减速率,纳米孔中的分子与其它可能的分子区分开来。

    NOISE SHIELDING TECHNIQUES FOR ULTRA LOW CURRENT MEASUREMENTS IN BIOCHEMICAL APPLICATIONS
    45.
    发明申请
    NOISE SHIELDING TECHNIQUES FOR ULTRA LOW CURRENT MEASUREMENTS IN BIOCHEMICAL APPLICATIONS 审中-公开
    用于生物化学应用超低电流测量的噪声屏蔽技术

    公开(公告)号:US20150185185A1

    公开(公告)日:2015-07-02

    申请号:US14558222

    申请日:2014-12-02

    Inventor: Roger J.A. Chen

    Abstract: A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together. In some embodiments, the device comprises a nanopore device, and wherein the nanopore device comprises a single cell of a nanopore array.

    Abstract translation: 公开了一种具有集成噪声屏蔽的装置。 该装置包括基本上围绕半导体器件的多个垂直屏蔽结构。 该器件还包括在基本上填充有导电流体的半导体器件上方的开口,其中多个垂直屏蔽结构和导电流体屏蔽半导体器件免受环境辐射。 在一些实施例中,该器件还包括在半导体器件下方的导电底部屏蔽件,以遮蔽半导体器件免受环境辐射。 在一些实施例中,开口被配置为允许生物样品被引入到半导体器件中。 在一些实施例中,垂直屏蔽结构包括多个通孔,其中多个通孔中的每一个将不止一个导电层连接在一起。 在一些实施方案中,所述装置包括纳米孔装置,并且其中所述纳米孔装置包括纳米孔阵列的单个细胞。

    Process for Biosensor Well Formation
    46.
    发明申请
    Process for Biosensor Well Formation 有权
    生物传感器井形成过程

    公开(公告)号:US20150153302A1

    公开(公告)日:2015-06-04

    申请号:US14521427

    申请日:2014-10-22

    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.

    Abstract translation: 公开了用于分子检测和感测的生物芯片。 生物芯片包括基底。 生物芯片包括形成在衬底上的多个离散位置,其密度大于每平方毫米500个孔。 每个离散部位包括设置在基底上以形成孔的侧壁。 每个离散位置包括设置在井的底部的电极。 在一些实施例中,形成井,使得井之间的串扰减少。 在一些实施例中,设置在阱的底部的电极被组织成电极组,其中每组电极共享公共对电极。 在一些实施例中,设置在阱底部的电极具有专用的对电极。 在一些实施例中,侧壁的表面被硅烷化,使得表面有助于在孔中或邻近孔的膜的形成。

    High Speed Molecular Sensing with Nanopores
    47.
    发明申请
    High Speed Molecular Sensing with Nanopores 有权
    高分子感应纳米孔

    公开(公告)号:US20150111779A1

    公开(公告)日:2015-04-23

    申请号:US14521469

    申请日:2014-10-23

    Inventor: Randall Davis

    Abstract: Described herein are methods and devices for capturing and determining the identity of molecules using nanopores. The molecules can be counted, sorted and/or binned rapidly in a parallel manner using a large number of nanopores (e.g., 132,000 nanopores reading 180 million molecules in 1 hour). This fast capture and reading of a molecule can be used to capture probe molecules or other molecules that have been generated to represent an original, hard to detect molecule or portions of an original molecule. Precise counting of sample molecules or surrogates for sample molecules can occur. The methods and devices described herein can, among other things, replace flow cytometers and other counting instruments (e.g., while providing increased precision and throughput relative to a flow cytometer). In some cases, the devices and methods capture and hold particular molecules or surrogates of molecules in the nanopores and then eject them into clean solution to perform a capture, sorting, and binning function similar to flow cytometers.

    Abstract translation: 本文描述的是使用纳米孔捕获和确定分子的身份的方法和装置。 可以使用大量的纳米孔(例如,在1小时内读取1.8亿分子的132,000个纳米孔)以平行方式快速计数,分选和/或分箱分子。 分子的这种快速捕获和读取可用于捕获已经产生的探针分子或其它分子,以代表原始的,难以检测的分子或原始分子的部分。 可能会发生样品分子或样品分子替代品的精确计数。 除此之外,本文所述的方法和装置可以替代流式细胞仪和其他计数仪器(例如,相对于流式细胞仪提供更高的精度和通量)。 在一些情况下,装置和方法捕获并保持纳米孔中的特定分子或分子的替代物,然后将其喷射到干净的溶液中以执行与流式细胞仪相似的捕获,分选和合并功能。

    SYSTEMS AND METHODS FOR ASSEMBLING A LIPID BILAYER ON A SUBSTANTIALLY PLANAR SOLID SURFACE
    48.
    发明申请
    SYSTEMS AND METHODS FOR ASSEMBLING A LIPID BILAYER ON A SUBSTANTIALLY PLANAR SOLID SURFACE 有权
    用于在大面积平面固体表面上组装脂质双体的系统和方法

    公开(公告)号:US20150056364A1

    公开(公告)日:2015-02-26

    申请号:US14334523

    申请日:2014-07-17

    CPC classification number: C12Q1/6876 B82Y5/00 G01N33/48721

    Abstract: Techniques for assembling a lipid bilayer on a substantially planar solid surface are described herein. In one example, a lipid material such as a lipid suspension is deposited on a substantially planar solid surface, a bubble filled with fast diffusing gas molecules is formed on the solid surface, and the gas molecules are allowed to diffuse out of the bubble to form a lipid bilayer on the solid surface.

    Abstract translation: 本文描述了在基本上平面的固体表面上组装脂质双层的技术。 在一个实例中,脂质材料如脂质悬浮液沉积在基本上平面的固体表面上,在固体表面上形成填充有快速扩散气体分子的气泡,并使气体分子扩散出气泡形成 固体表面上的脂质双层。

    SYSTEMS AND METHODS FOR FORMING A NANOPORE IN A LIPID BILAYER
    49.
    发明申请
    SYSTEMS AND METHODS FOR FORMING A NANOPORE IN A LIPID BILAYER 有权
    用于形成脂肪双层纳米粒子的系统和方法

    公开(公告)号:US20140203464A1

    公开(公告)日:2014-07-24

    申请号:US14150322

    申请日:2014-01-08

    CPC classification number: G01N33/48721 B81B1/00 B82Y5/00 G01N15/12

    Abstract: A method of forming a nanopore in a lipid bilayer is disclosed. A nanopore forming solution is deposited over a lipid bilayer. The nanopore forming solution has a concentration level and a corresponding activity level of pore molecules such that nanopores are substantially not formed un-stimulated in the lipid bilayer. Formation of a nanopore in the lipid bilayer is initiated by applying an agitation stimulus level to the lipid bilayer. In some embodiments, the concentration level and the corresponding activity level of pore molecules are at levels such that less than 30 percent of a plurality of available lipid bilayers have nanopores formed un-stimulated therein.

    Abstract translation: 公开了一种在脂质双层中形成纳米孔的方法。 将纳米孔形成溶液沉积在脂质双层上。 形成纳米孔的溶液具有孔分子的浓度水平和相应的活性水平,使得纳米孔在脂双层中基本上未形成未刺激。 脂质双层中的纳米孔的形成是通过向脂质双层施加搅拌刺激水平来引发的。 在一些实施方案中,孔分子的浓度水平和相应的活性水平的水平使得少于30%的多个可用脂质双层具有在其中未被刺激的纳米孔。

    Methods for creating bilayers for use with nanopore sensors

    公开(公告)号:US11299781B2

    公开(公告)日:2022-04-12

    申请号:US16396284

    申请日:2019-04-26

    Abstract: The present disclosure provides biochips and methods for making biochips. A biochip can comprise a nanopore in a membrane (e.g., lipid bilayer) adjacent or in proximity to an electrode. Methods are described for forming the membrane and insert-ing the nanopore into the membrane. The biochips and methods can be used for nucleic acid (e.g., DNA) sequencing. The present disclosure also describes methods for detecting, sorting, and binning molecules (e.g., proteins) using biochips.

Patent Agency Ranking