Abstract:
A nanopore cell includes a conductive layer. The nanopore cell further includes a titanium nitride (TiN) working electrode disposed above the conductive layer. The nanopore cell further includes insulating walls disposed above the TiN working electrode, wherein the insulating walls and the TiN working electrode form a well into which an electrolyte may be contained. In some embodiments, the TiN working electrode comprises a spongy and porous TiN working electrode that is deposited by a deposition technique with conditions tuned to deposit sparsely-spaced TiN columnar structures or columns of TiN crystals above the conductive layer.
Abstract:
A method of analyzing a molecule in a nanopore is disclosed. A voltage is applied across a nanopore that is inserted in a membrane by coupling the nanopore to a voltage source. The nanopore is decoupled from the voltage source. After the decoupling, a rate of decay of the voltage across the nanopore is determined. A molecule in the nanopore is distinguished from other possible molecules based on the determined rate of decay of the voltage across the nanopore.
Abstract:
A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together. In some embodiments, the device comprises a nanopore device, and wherein the nanopore device comprises a single cell of a nanopore array.
Abstract:
A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
Abstract:
A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together. In some embodiments, the device comprises a nanopore device, and wherein the nanopore device comprises a single cell of a nanopore array.
Abstract:
A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
Abstract:
Described herein are methods and devices for capturing and determining the identity of molecules using nanopores. The molecules can be counted, sorted and/or binned rapidly in a parallel manner using a large number of nanopores (e.g., 132,000 nanopores reading 180 million molecules in 1 hour). This fast capture and reading of a molecule can be used to capture probe molecules or other molecules that have been generated to represent an original, hard to detect molecule or portions of an original molecule. Precise counting of sample molecules or surrogates for sample molecules can occur. The methods and devices described herein can, among other things, replace flow cytometers and other counting instruments (e.g., while providing increased precision and throughput relative to a flow cytometer). In some cases, the devices and methods capture and hold particular molecules or surrogates of molecules in the nanopores and then eject them into clean solution to perform a capture, sorting, and binning function similar to flow cytometers.
Abstract:
Techniques for assembling a lipid bilayer on a substantially planar solid surface are described herein. In one example, a lipid material such as a lipid suspension is deposited on a substantially planar solid surface, a bubble filled with fast diffusing gas molecules is formed on the solid surface, and the gas molecules are allowed to diffuse out of the bubble to form a lipid bilayer on the solid surface.
Abstract:
A method of forming a nanopore in a lipid bilayer is disclosed. A nanopore forming solution is deposited over a lipid bilayer. The nanopore forming solution has a concentration level and a corresponding activity level of pore molecules such that nanopores are substantially not formed un-stimulated in the lipid bilayer. Formation of a nanopore in the lipid bilayer is initiated by applying an agitation stimulus level to the lipid bilayer. In some embodiments, the concentration level and the corresponding activity level of pore molecules are at levels such that less than 30 percent of a plurality of available lipid bilayers have nanopores formed un-stimulated therein.
Abstract:
The present disclosure provides biochips and methods for making biochips. A biochip can comprise a nanopore in a membrane (e.g., lipid bilayer) adjacent or in proximity to an electrode. Methods are described for forming the membrane and insert-ing the nanopore into the membrane. The biochips and methods can be used for nucleic acid (e.g., DNA) sequencing. The present disclosure also describes methods for detecting, sorting, and binning molecules (e.g., proteins) using biochips.