Abstract:
A sensor, in particular thermal sensor, having a silicon element and a largely self-supporting membrane layer equipped with at least one sensor element, is proposed. The membrane layer is furthermore spaced away from the silicon element by way of at least one contact column and is at least largely supported thereby. The contact column moreover makes electrical contact to the sensor element. Also proposed is a method for manufacturing a largely self-supporting membrane, a polymer layer first being deposited on a base element, patterned, and equipped with at least one cutout. The cutout is subsequently filled with a filler material, and a membrane layer is applied onto the polymer layer. Lastly, the polymer layer is removed again. The proposed method for manufacturing a largely self-supporting membrane layer is suitable in particular for constructing a sensor, in particular a thermal sensor or a thermal sensor array.
Abstract:
A filter for electric signals has a substrate, a vibrating body capable of vibrating with at least two antipodes deflected in phase opposition relative to the substrate and has electrodes connected to a signal input and a signal output for electric excitation and for detection of the vibration of the vibrating body. The electrodes for detecting the vibration, each assigned to antipodes deflected in phase opposition, are connected to two separate terminals of the signal output.
Abstract:
A method for manufacturing a micromechanical device, in particular a micromechanical vibrating-mirror device, having the following steps: making available a three-layer structure having a first layer, a second layer and a third layer, the second layer lying between the first and the third layers; etching through the first layer up to the second layer to produce an island region, lying on the second layer, which is joined to region of the first layer surrounding the island region by way of one or more connecting webs, and etching through a region of the third layer up to the second layer and removing a region of the second layer below the island region in such a way that the island region can perform movements, preferably torsional vibrations, about the one or more connecting webs, the torsional vibrations having such an amplitude that a part of the island region extends into the etched-through region of the third layer.
Abstract:
An acceleration sensing device includes a rotational speed sensor which is mounted on a substrate and detects rotational speed, at least one oscillating structure with a deflectable seismic mass, and an acceleration sensor that detects linear acceleration and has at least one additional seismic mass which is suspended on flexible elements so that it can be deflected. The seismic masses of the two sensors are deflected independently of one another.
Abstract:
A method of teaching pronunciation is provided which includes communicating by a voice portal server to a user a model word and detecting a response by the user to the voice portal server. The method also includes comparing the response word to the model word and determining a confidence level based on the comparison of the response word to the model word. The method further includes comparing an acceptance limit to the confidence level and confirming a correct pronunciation of the model word if the confidence level one of equals and exceeds the acceptance limit.
Abstract:
A method of protecting a micro-mechanical sensor structure embedded in a micro-mechanical sensor chip, in which the micro-mechanical sensor structure is fabricated with a protective membrane, the micro-mechanical sensor chip is arranged so that a surface of the protective membrane faces toward a second chip, and the micro-mechanical sensor chip is secured to the second chip.
Abstract:
A method and a system for controlling a wireless sensor network from a user interface coupled to the Internet are provided. A user accesses an Internet-based portal from the user interface and establishes a secure broadband Internet connection between a remote control module coupled to the wireless sensor network and the portal. The connection is established by manually triggering a connection between the remote control module and the portal from the remote control module.
Abstract:
A method of teaching pronunciation is provided which includes communicating by a voice portal server to a user a model word and detecting a response by the user to the voice portal server. The method also includes comparing the response word to the model word and determining a confidence level based on the comparison of the response word to the model word. The method further includes comparing an acceptance limit to the confidence level and confirming a correct pronunciation of the model word if the confidence level one of equals and exceeds the acceptance limit.
Abstract:
An exemplary embodiment of the present invention creates a micromechanical rotational rate sensor having a first Coriolis mass element and a second Coriolis mass element which may be situated over a surface of a substrate. An exemplary embodiment of a micromechanical rotational rate sensor may have an activating device by which the first Coriolis mass element and the second Coriolis mass element are able to have vibrations activated along a first axis. An exemplary embodiment of a micromechanical rotational rate sensor may have a detection device by which deflections of the first Coriolis mass elements and of the second Coriolis element are able to be detected along a second axis, which is perpendicular to the first axis, on the basis of a correspondingly acting Coriolis force. The first axis and second axis may run parallel to the surface of the substrate. The detecting device may have a first detection mass device and a second detection mass device. The centers of gravity of the first Coriolis mass element, the second Coriolis mass element, the first detection mass device and the second detection mass device may coincide at a common mass center of gravity when they are at rest.
Abstract:
A micromechanical yaw rate sensor having: a substrate having an anchoring device provided on the substrate; and an annular flywheel that is connected, via a flexural spring system, with the anchoring device in such a way that the area of connection with the anchoring device is located essentially in the center of the ring, so that the annular flywheel is able to be displaced, elastically from its rest position, about an axis of rotation situated perpendicular to the substrate surface, and about at least one axis of rotation situated parallel to the substrate surface. The anchoring device has two bases that are situated opposite one another and are connected fixedly with the substrate, connected with one another via a bridge. A V-shaped flexural spring of the flexural spring system is attached to each of the opposite sides of the bridge in such a way that the apex is situated on the bridge and the limbs are spread towards the flywheel with an opening angle.