Abstract:
Methods of forming semiconductor devices including vertical channels and semiconductor devices formed using such methods are provided. The methods may include forming a stack including a plurality of insulating patterns alternating with a plurality of conductive patterns on an upper surface of a substrate and forming a hole through the stack. The hole may expose sidewalls of the plurality of insulating patterns and the plurality of conductive patterns. The sidewalls of the plurality of insulating patterns may be aligned along a first plane that is slanted with respect to the upper surface of the substrate, and midpoints of the respective sidewalls of the plurality of conductive patterns may be aligned along a second plane that is substantially perpendicular to the upper surface of the substrate.
Abstract:
A method of manufacturing a non-volatile memory device, can be provided by forming a gate insulating layer and a gate conductive layer on a substrate that includes active regions that are defined by device isolation regions that include a carbon-containing silicon oxide layer. The gate conductive layer and the gate insulating layer can be sequentially etched to expose the carbon-containing silicon oxide layer. The carbon-containing silicon oxide layer can be wet-etched to recess a surface of the carbon-containing silicon oxide layer to below a surface of the substrate. Then, an interlayer insulating layer can be formed between the gate insulating layer and the gate conductive layer on the carbon-containing silicon oxide layer, where an air gap can be formed between the carbon-containing silicon oxide layer and the gate insulating layer.
Abstract:
A CMOS transistor and a method of manufacturing the CMOS transistor are disclosed. An NMOS transistor is formed on a first region of a semiconductor substrate. A PMOS transistor is formed on a second region of a semiconductor substrate. The NMOS transistor includes a first gate conductive layer. The PMOS transistor includes a second gate conductive layer. The first gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.0 eV to about 4.3 eV. The third gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.7 eV to about 5.0 eV.
Abstract:
A CMOS transistor and a method of manufacturing the CMOS transistor are disclosed. An NMOS transistor is formed on a first region of a semiconductor substrate. A PMOS transistor is formed on a second region of a semiconductor substrate. The NMOS transistor includes a first gate conductive layer. The PMOS transistor includes a second gate conductive layer. The first gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.0 eV to about 4.3 eV. The third gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.7 eV to about 5.0 eV.
Abstract:
A heating chamber which can be used during a reflow process to form a metal wiring having a multi-layered writing structure and a method of heating a wafer using the same, are provided. The heating chamber is movable upward and downward between the upper process position and the lower loading position, and includes a pedestal having a supporting surface for supporting a wafer, a cover installed above the pedestal to form a processing area together with the supporting surface when the pedestal is placed in its raised process position and a heating unit for heating the waver. In the method of heating the wafer, the temperature in the processing area is maintained suitable for heating the wafer before the wafer is loaded onto the supporting surface, the wafer is loaded onto the supporting surface and the loaded wafer is heating in the processing area.
Abstract:
A semiconductor device having a capacitor. The capacitor includes a first electrode, a dielectric layer formed of a metal oxide layer including a Ta2O5 layer, and a second electrode composed of first and second metal nitride layers sequentially stacked. Each of the first and second metal nitride layers has a TiN layer and a WN layer. The second electrode of the capacitor is a double-layered structure having the first and second metal nitride layers, and thus annealing after forming the second electrode is performed at 750° C. or less, to thereby reduce an equivalent oxide thickness of the dielectric layer.
Abstract translation:一种具有电容器的半导体器件。 电容器包括第一电极,由包括Ta 2 O 5层的金属氧化物层形成的电介质层和由顺序堆叠的第一和第二金属氮化物层构成的第二电极。 第一和第二金属氮化物层中的每一个具有TiN层和WN层。 电容器的第二电极是具有第一和第二金属氮化物层的双层结构,因此在750℃或更低的温度下进行形成第二电极之后的退火,从而降低电介质层的等效氧化物厚度 。
Abstract:
The capacitor of semiconductor devices includes a first electrode, a dielectric layer formed of a metal oxide layer including a Ta2O5 layer, and a second electrode composed of first and second metal nitride layers sequentially stacked. First and second metal nitride layers are a TiN layer and a WN layer. The second electrode of the capacitor is a double-layered structure having the first and second metal nitride layers, and thus annealing after forming the second electrode is performed at 750° C. or less to avoid increasing an equivalent oxide thickness of the dielectric layer.
Abstract translation:半导体器件的电容器包括第一电极,由包括Ta 2 O 5层的金属氧化物层形成的电介质层和由顺序层叠的第一和第二金属氮化物层构成的第二电极。 第一和第二金属氮化物层是TiN层和WN层。 电容器的第二电极是具有第一和第二金属氮化物层的双层结构,因此在形成第二电极之后的退火在750℃以下进行,以避免增加电介质层的等效氧化物厚度。