METHOD TO MAXIMIZE ENERGY RECOVERY IN WASTE-TO-ENERGY PROCESSES

    公开(公告)号:US20220251977A1

    公开(公告)日:2022-08-11

    申请号:US17526813

    申请日:2021-11-15

    Abstract: In a fossil fuel waste incineration or plasma gasification process, waste heat generated by combustion of waste is captured by a heat transfer fluid and conveyed to an Organic Rankine Cycle (ORC) for energy recovery. In the case of a fossil fuel-fired waste incineration system, the heat transfer fluid captures waste heat from a double-walled combustion chamber, a heat exchanger being used to cool the hot process exhaust (gas cooler). In the case of a plasma waste gasification system, the heat transfer fluid captures waste heat from a plasma torch, a gasification chamber and combustion chamber cooling jackets as well as any other high-temperature components requiring cooling, and then a heat exchanger used to cool the hot process exhaust (gas cooler). The heat exchanger may take on several configurations, including plate or shell and tube configurations.

    METHOD AND APPARATUS FOR THE PRODUCTION OF HIGH PURITY SPHERICAL METALLIC POWDERS FROM A MOLTEN FEEDSTOCK

    公开(公告)号:US20210114104A1

    公开(公告)日:2021-04-22

    申请号:US16981692

    申请日:2019-03-18

    Abstract: An apparatus for producing metallic powders from molten feedstock includes a heating source for melting a solid feedstock into a molten feed, and a crucible for containing the molten feed. A liquid feed tube is also provided to feed the molten feed as a molten stream. A plasma source delivers a plasma stream, with the plasma stream being adapted to be accelerated to a supersonic N velocity and being adapted : to then impact the molten stream for producing metallic powders. The feed tube extends from the crucible to a location where a supersonic plasma plume atomizes the molten stream. The plasma source includes at least two plasma torches provided with at least one supersonic nozzle aimed towards the molten stream. The multiple plasma torches are disposed symmetrically about the location where the supersonic plasma plumes atomize the molten stream, such as in a ring-shaped configuration

    ENERGY EFFICIENT SALT-FREE RECOVERY OF METAL FROM DROSS

    公开(公告)号:US20200332392A1

    公开(公告)日:2020-10-22

    申请号:US16712810

    申请日:2019-12-12

    Abstract: A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non-contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.

    High power DC non transferred steam plasma torch system

    公开(公告)号:US10178750B2

    公开(公告)日:2019-01-08

    申请号:US14768090

    申请日:2014-02-17

    Abstract: A high power DC steam plasma torch system (S) includes a steam plasma torch assembly (1) wherein superheated steam (46) is used as the main plasma forming gas, thereby resulting in a very reactive steam plasma plume. The superheated steam (46) is injected internally directly into the plasma plume via a ceramic lined steam feed tube (25) for reducing condensation of steam before reaching the plasma plume. The superheated steam (46) flows through a gas vortex (16) which has tangentially drilled holes thereby resulting in a high speed gas swirl that minimizes electrode erosion. In the present steam plasma torch system (S), the plasma torch assembly (1) is ignited using an ignition contactor which is housed external to the plasma torch assembly (1). The superheated steam (46) is injected into the plasma plume using a water cooled steam vortex generator assembly (15).

    STEAM PLASMA ARC HYDROLYSIS OF OZONE DEPLETING SUBSTANCES

    公开(公告)号:US20170307214A1

    公开(公告)日:2017-10-26

    申请号:US15426735

    申请日:2017-02-07

    Abstract: A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.

Patent Agency Ranking