Abstract:
The present invention relates to genetic containment systems which express a biotin-binding component that can be used for selectively destroying recombinant cells such as genetically engineered microorganisms. These systems may comprise a streptavidin or an avidin gene whose expression is controlled by a regulatable promoter. The regulatory agent such as a transcriptional effector is expressed from another gene which may also be expressed and its expression controlled by the containment system. Expression of the agent can be designed to respond to physiological changes in the environment. The invention also relates to containment systems and methods for the selective detection or tracking of recombinant cells and to eukaryotic and prokaryotic cells which contain these genetic containment systems.
Abstract:
A novel system and method for sensitive antigen detection. The system utilizes immuno-polymerase chain reaction in which a specific biotinylated nucleic acid molecule is used as the marker. The biotinylated marker is attached to antigen-antibody complex through a streptavidin-protein A chimeric protein that possesses tight and specific binding affinity both for biotin and immunoglobulin G. A segment of the attached biotinylated marker is amplified by polymerase chain reactions with appropriate primers and the polymerase chain reaction products are detected by agarose gel electrophoresis. The method can detect any antigen and has a greater sensitivity than any existing antigen detection system.
Abstract:
The invention relates to bis-protein-DNA conjugates. A protein having an antigen specific binding activity is covalently linked to each end of a derivatized DNA molecule. The bis-protein-DNA conjugates can be used for immunoassays and measuring distances between proteins at up to 3.4 .ANG. resolution. The invention also relates to methods of synthesizing these bis-protein-DNA conjugates. Synthesis of the conjugates entails derivatizing the 5' or 3' end of a DNA oligonucleotide and covalently linking that DNA to a protein. The DNA can be indirectly conjugated to an antibody or Fab' fragment, using a avidin/streptavidin-biotin linkage. The conjugates of the invention can be used in immunoassays and PCR assays.
Abstract:
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.
Abstract:
This invention is directed to methods for determining a nucleotide sequence of a nucleic acid using positional sequencing by hybridization, and to the creation of nucleic acids probes which may be used with these methods. This invention is also directed to diagnostic aids for analyzing the nucleic acid composition and content of biological samples, including samples derived from medical and agricultural sources.
Abstract:
The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.
Abstract:
The present invention defines a DNA:protein-binding assay useful for screening libraries of synthetic or biological compounds for their ability to bind DNA test sequences. The assay is versatile in that any number of test sequences can be tested by placing the test sequence adjacent to a defined protein binding screening sequence. Binding of molecules to these test sequence changes the binding characteristics of the protein molecule to its cognate binding sequence. When such a molecule binds the test sequence the equilibrium of the DNA:protein complexes is disturbed, generating changes in the concentration of free DNA probe. Also described herein is a method to capture DNA that has been released from the DNA:protein complex.
Abstract:
The present invention relates to a method for measuring the amount of a target nucleic acid in a sample using a standard which is designed to have one base difference compared with the gene of interest or a “target nucleic acid sequence.” Use of such standard in combination with a method of “enhancing” the difference in the standard and the test nucleic acid sample using, for example, a base extension reaction carried right at the mutation site allowing amplification of the standard and target nucleic acids with the same efficiency and facilitating quantification of the target nucleic acid. Thereafter a means of quantifying the “enhanced” standard and target nucleic acid samples is used to determine the amount of the target nucleic acid. In the preferred embodiment, the quantification means is Mass Spectrometry.
Abstract:
Chromosomal abnormalities are responsible for a significant number of birth defects, including mental retardation. The present invention is related to methods for non-invasive and rapid, prenatal diagnosis of chromosomal abnormalities based on analysis of a maternal blood sample. The invention exploits the differences in DNA between the mother and fetus, for instance differences in their methylation states, as a means to enrich for fetal DNA in maternal plasma sample. The methods described herein can be used to detect chromosomal DNA deletions and duplications. In a preferred embodiment, the methods are used to diagnose chromosomal aneuploidy and related disorders, such as Down's and Turner's Syndrome.
Abstract:
Provided herein are compositions and methods for analysis of nucleic acids, including, methods and compositions for genotyping, haplotyping, sequencing and performing other genetic and epigenetic analyses on nucleic acids, for example. In some embodiments, methods and compositions suitable for whole-genome sequencing on single molecules of nucleic acid are provided. In some embodiments, analysis of single molecules of nucleic acid are performed in conjunction with nanopores and/or nanopore devices.