Abstract:
An optical phase shifting arrangement and associated optical switching device and method are disclosed. The optical phase shifting arrangement comprises a first optical phase shifter configured to provide a first phase shift to an optical signal, and a second optical phase shifter configured to provide a second phase shift to the optical signal in addition to the first phase shift. During a predefined period, the first optical phase shifter and the second optical phase shifter are driven such that the second phase shift is substantially complementary to the first phase shift.
Abstract:
An optical coupling may involve orienting a waveguide and a lens such that light rays are focused on a surface. The lens may involve the use of a material having a variable refractive index to focus rays of light along first axis and a curved surface to focus the rays of light along a second axis.
Abstract:
An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
Abstract:
An optical modulator may include a leftmost waveguide, a rightmost waveguide, and a dielectric layer disposed therebetween. In one embodiment, the waveguides may be disposed on the same plane. When a voltage potential is created between the rightmost and leftmost waveguides, these layers form a silicon-insulator-silicon capacitor (also referred to as SISCAP) structure that provides efficient, high-speed optical modulation of an optical signal passing through the modulator. As opposed to a horizontal SISCAP structure where the dielectric layer is disposed between upper and lower waveguides, arranging the dielectric layer between waveguides disposed on the same plane results in a vertical SISCAP structure. In one embodiment, the leftmost and rightmost waveguide are both made from crystalline silicon.
Abstract:
An optical coupling may involve orienting a waveguide and a lens such that light rays are focused on a surface. The lens may involve the use of a material having a variable refractive index to focus rays of light along first axis and a curved surface to focus the rays of light along a second axis.
Abstract:
An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
Abstract:
An optical coupler may include a fiber optic structure that has a portion of an outer surface that is beveled at a predetermined angle relative to a longitudinal axis of the fiber optic structure. The beveled outer surface portion may be optically coupled with a waveguide core of an optical integrated circuit. The fiber optic structure may also include a second outer surface portion that is butt coupled to an end of an optical fiber to optically couple the second outer surface portion with the optical fiber.
Abstract:
By determining an alignment point for a photonic element in a substrate of a given material; applying, via a laser aligned with the photonic element according to the alignment point, an etching pattern to the photonic element to produce a patterned region and an un-patterned region in the photonic element, wherein applying the etching pattern alters a chemical bond in the given material for the patterned region of the photonic element that increases a reactivity of the given material to an etchant relative to a reactivity of the un-patterned region, and wherein the patterned region defines an engagement feature in the un-patterned region that is configured to engage with a mating feature on a Photonic Integrated Circuit (PIC); and removing the patterned region from the photonic element via the etchant, various systems and methods may make use of laser patterning in optical components to enable alignment of optics to chips.
Abstract:
An optical modulator may include a lower waveguide, an upper waveguide, and a dielectric layer disposed therebetween. When a voltage potential is created between the lower and upper waveguides, these layers form a silicon-insulator-silicon capacitor (also referred to as SISCAP) guide that provides efficient, high-speed optical modulation of an optical signal passing through the modulator. In one embodiment, at least one of the waveguides includes a respective ridge portion aligned at a charge modulation region which may aid in confining the optical mode laterally (e.g., in the width direction) in the optical modulator. In another embodiment, ridge portions may be formed on both the lower and the upper waveguides. These ridge portions may be aligned in a vertical direction (e.g., a thickness direction) so that ridges overlap which may further improve optical efficiency by centering an optical mode in the charge modulation region.