Abstract:
The present invention provides an FED with a getter material deposited and activated on the substrates of the faceplate and the baseplate of the FED. In one embodiment of the invention, a large FED includes a faceplate, a baseplate, and an unactivated non-evaporable getter material. The faceplate has a transparent substrate with an inner surface, and a cathodoluminescent material disposed on a portion of the inner surface. The baseplate has a base substrate with a first surface and an emitter array formed on the first surface. The baseplate and the faceplate are coupled together to form a sealed vacuum space in which the inner surface and the first surface are juxtaposed to one another in a spaced-apart relationship across a vacuum gap. The unactivated non-evaporating getter material is deposited directly on the inner surface and/or the first surface. The unactivated non-evaporating getter material may alternatively be deposited on a thin film of bonding material that is disposed on the inner surface and/or the first surface.
Abstract:
The present invention is directed to a novel etching process for a semiconductor material which inhibits corrosion of metal comprised of pretreating the material, preferably with a surfactant, and then exposing the material to a mixture comprising salt, a buffered oxide etch, and optionally a surfactant.
Abstract:
This invention is a process for making resistor structures having high stability and reliability characteristics. Process parameters are easily modifiable to adjust the resistivity of the structures. A layer of titanium nitride, which may contain certain impurities such as carbon, is deposited via chemical vapor deposition by pyrolization of an organometallic precursor compound of the formula Ti(NR.sub.2).sub.4 either alone or in the presence of either a nitrogen source (e.g. ammonia or nitrogen gas) or an activated species (which may include a halogen, NH.sub.3, or hydrogen radicals, or combinations thereof). The TiN film is then oxidized to create a structure that demonstrates highly stable, highly reliable resistive characteristics, with bulk resistivity values in giga ohm range. In a preferred embodiment of the invention, a predominantly amorphous titanium carbonitride film is deposited on an insulative substrate in a chemical vapor deposition chamber. A layer of titanium is then deposited on top of the titanium carbonitride film. The titanium layer is then patterned with photoresist. The exposed titanium is then etched with a reagent that is selective for titanium over titanium carbonitride (HF, for example, has better than 10:1 selectivity) so that the etch essentially stops when the titanium carbonitride film is exposed. The exposed titanium carbonitride film is then oxidized to achieve the desired resistivity.
Abstract:
A removable bandpass filter layer (22), which is preferably part of a pattern transfer tool (10), improves the resolution of a semiconductor wafer aligner that uses a relatively broad bandwidth radiation source. A narrower bandwidth filter layer provides more complete destructive interference of undesirable diffraction patterns when it is used with a phase-shift pattern transfer tool and removes radiation of longer wavelengths to improve resolution when it is used with a nonphase-shift pattern transfer tool. Using a removable bandpass filter layer, rather than permanently installing a narrow bandpass filter in the aligner, does not affect the speed of patterning layers that do not require the enhanced resolution. The same aligner can thus be used for either high resolution or high throughput without substantial modification to the aligner.
Abstract:
The subject process relates to the etching of a semiconductor device having a re-entrant profile area which causes residual positive photoresist material to remain therewithin after formation of an etch mask of the positive photoresist material. A negative photoresist etch mask is formed on a major surface of the outer conductive film structural layer. The etch mask comprises a plurality of photoresist lines arranged in a predetermined pattern which defines a plurality of spaces therebetween, which in turn expose a plurality of areas of the major surface of the semiconductor device. Substantially all of the negative photosensitive material located within the re-entrant profile area is removed during the etch mask formation process. The exposed areas of the major surface of the outer structural layer can then be etched to form the requisite etch pattern with a chemical etchant system without regard to interference by unwanted residual photoresist material.
Abstract:
A baseplate for a flat panel display comprising relatively thick semiconductor substrate, wherein the semiconductor substrate is a macro-grain polycrystalline substrate, which is amorphized by ion implantation or reformed by recrystallization, to obscure the grain boundaries, thereafter redundant circuitry may be fabricated thereon to further enhance product yield.
Abstract:
A carbon-containing, chemical etchant protective patterned layer is formed on a multi-layer substrate including a silicon dioxide layer formed on an underlying silicon or metal silicide layer by providing a predetermined pattern defining a plurality of openings in the carbon-containing, chemical etchant protective patterned layer. Next, the plurality of exposed areas of the major surface of the silicon dioxide structural layer are selectively etched with a substantially carbon-free chemical etchant system. These materials form a polyhalocarbon material in the presence of a carbon-containing material. Thus, since the chemical etchant protective patterned layer is carbon-containing, a localized polyhalocarbon deposition can be affected, at high selectivity conditions, by adding the carbon-free chemical etchant system in the presence of the protective patterned layer. More specifically, the hydrogen-containing material reacts with the carbon-free, halogen-containing material and the carbon-containing, chemical etchant protective patterned layer to selectively form in situ, at the point of interaction thereof, a polyhalocarbon protective coating layer on the silicon dioxide structural layer.
Abstract:
A method of preventing null formation is performed on a phase shifted photomask including a clear quartz substrate, dark chrome feature features, and alternating clear phase shifters raised from the substrate. The phase shifter features are terminated in a transmissive, optically clear edge. To prevent null formation and consequent formation of stringers on the surface of the integrated circuit, the substantially vertical edge of the optically clear end of the phase shifter is tapered. The slope at any point along the tapered edge between the photomask substrate and the phase shifter is set to an angle, typically less than forty-five degrees, shallow enough that the point spread function does not produce an image. The point spread function of the imaging system spreads out the null, which is therefore not printed into the photoresist layer on the integrated circuit. The tapered edge of the phase shifter is created by either discrete or continuous etching methods. Both methods create the phase shifter and tapered edges simultaneously and are compatible with photomasks having either additive or subtractive type phase shifters.
Abstract:
A dynamic random access memory (DRAM) cell having a corrugated storage contact capacitor for enhancing capacitance. A noncritical alignment is effected between the substrate contact area and the lower capacitor plate by using an etch stop layer to protect wordlines, field-effect transistors (FETs), and field oxide regions during the patterning and etching of storage capacitor regions. The corrugated storage contact capacitor is fabricated by depositing alternating layers of dielectric materials having either substantially different etch rates or wet etch selectivity one toward the other. The layers are isotropically etched and a cavity having corrugated sidewalls is provided. A doped poly layer is deposited to function as the storage-node capacitor plate. The deposition of a dielectric layer is followed by an insitu-doped poly layer deposited to form the upper capacitor plate. The capacitor thus formed is typified as having the storage-node capacitor plate self-aligned to the contact area of the substrate.
Abstract:
An enhanced halogenated plasma for ion-assisted plasma etches to which silicon tetrabromide has been added to retard erosion, flowing and reticulation of photoresist, particularly during an etch of an aluminum or tungsten metal layer. The added resistance to erosion, flowing and reticulation is greater than that achieved through the addition of silicon tetrachloride to the same plasma. It is postulated that a silicon-containing layer is deposited on horizontal and vertical surfaces of photoresist at a faster rate than that possible for silicon tetrachloride. As with silicon tetrachloride, resist loss still occurs, but at a much reduced rate, with loss on the upper surfaces of the photoresist segments (these surfaces being perpendicular to the RF field of the reactor) occurring at a higher rate than loss on vertical surfaces (these surfaces being parallel to the RF field of the reactor).