摘要:
A method and device providing a HA junction varactor which may be fabricated with a reduced variation in C-V tuning curve from one varactor to the next. The process produces a varactor with an active region formed substantially by doping an Si substrate with various dopants at various energy levels. Accordingly, unit-to-unit device variation is reduced because etching, growing, and deposition processes to make the active portion of the varactor are reduced or eliminated. The resulting HA junction has a more uniform thickness, and a more uniform doping profile.
摘要:
A process is disclosed for fabricating precision polysilicon resistors which more precisely control the tolerance of the sheet resistivity of the produced polysilicon resistors. The process generally includes performing an emitter/FET activation rapid thermal anneal (RTA) on a wafer having partially formed polysilicon resistors, followed by steps of depositing a protective dielectric layer on the polysilicon, implanting a dopant through the protective dielectric layer into the polysilicon to define the resistance of the polysilicon resistors, and forming a silicide.
摘要:
A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
摘要:
A structure and method of fabricating lateral diodes. The diodes include Schottky diodes and PIN diodes. The method of fabrication includes forming one or more doped regions and more trenches in a silicon substrate and forming metal silicides on the sidewalls of the trenches. The fabrication of lateral diodes may be integrated with the fabrication of field effect, bipolar and SiGe bipolar transistors.
摘要:
Various methods of fabricating a high precision, silicon-containing resistor in which the resistor is formed as a discrete device integrated in complementary metal oxide semiconductor (CMOS) processing utilizing low temperature silicidation are provided. In some embodiments, the Si-containing layer is implanted with a high dose of ions prior to activation. The activation can be performed by the deposition of a protective dielectric layer, or a separate activation anneal. In another embodiment, a highly doped in-situ Si-containing layer is used thus eliminating the need for implanting into the Si-containing layer.
摘要:
A method of fabricating a resistor in which the resistance value of the resistor is measured and adjusted after silicidation is provided. The method of the present invention begins with first providing at least one resistor, e.g., polysilicon, having a resistance value on a surface of a semiconductor substrate. The at least one resistor has been subjected to a silicidation process. Next, the resistance value of the at least one resistor is measured to determine the actual resistance of the resistor after silicidation. After the measuring step, the resistance of the resistor is adjusted to achieve a desired resistance value. The adjusting may include a post silicidation rapid thermal anneal and/or a post silicidation ion implantation and a low temperature rapid thermal anneal step.
摘要:
Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
摘要:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
摘要:
A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
摘要:
Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.