ELECTROCHEMICAL CELL AND METHOD OF MANUFACTURING

    公开(公告)号:US20190207205A1

    公开(公告)日:2019-07-04

    申请号:US15862023

    申请日:2018-01-04

    Abstract: An electrochemical cell comprising a lithium metal negative electrode layer physically and chemically bonded to a surface of a negative electrode current collector via an intermediate metal chalcogenide layer. The intermediate metal chalcogenide layer may comprise a metal oxide, a metal sulfide, a metal selenide, or a combination thereof. The intermediate metal chalcogenide layer may be formed on the surface of the negative electrode current collector by exposing the surface to a chalcogen in gas phase. Then, the lithium metal negative electrode layer may be formed on the surface of the negative electrode current collector over the intermediate metal chalcogenide layer by contacting at least a portion of the metal chalcogenide layer with a source of lithium such that the lithium actively wets the metal chalcogenide layer and forms a conformal lithium metal layer on the surface of the negative electrode current collector over the metal chalcogenide layer.

    CARBONATE-BASED ELECTROLYTE SYSTEM IMPROVING OR SUPPORTING EFFICIENCY OF ELECTROCHEMICAL CELLS HAVING LITHIUM-CONTAINING ANODES

    公开(公告)号:US20190058219A1

    公开(公告)日:2019-02-21

    申请号:US15677389

    申请日:2017-08-15

    Abstract: A highly-concentrated electrolyte system for an electrochemical cell is provided, along with methods of making the electrolyte system. The electrolyte system includes a bound moiety having an ionization potential greater than an electron affinity and comprising one or more salts selected from the group consisting of: lithium bis(fluorosulfonyl)imide, sodium bis(fluorosulfonyl)imide, potassium bis(fluorosulfonyl)imide, and combinations thereof bound to a solvent comprising one or more solvents selected from the group consisting of: dimethyl carbonate, dimethyl dicarbonate, and combinations thereof. The salts have a concentration in the electrolyte system of greater than or equal to about 4M. A molar ratio of the salts to the dimethyl carbonate is about 0.5. A molar ratio of the salts to the dimethyl dicarbonate is about 1. The salts binds to the dimethyl carbonate and/or dimethyl dicarbonate causing the electrolyte system to be substantially free of unbound dimethyl carbonate, unbound dimethyl dicarbonate, and unbound bis(fluorosulfonyl)imide.

    Primer Surface Coating For High-Performance Silicon-Based Electrodes

    公开(公告)号:US20170271678A1

    公开(公告)日:2017-09-21

    申请号:US15070677

    申请日:2016-03-15

    Abstract: A negative electrode for an electrochemical cell (e.g., a lithium ion battery) is provided. The electrode has an active material that undergoes volumetric expansion during lithiation and delithiation, e.g., silicon-containing materials. The electrode has a current collector with an electrically conductive flexible surface primer coating disposed thereon. The primer coating comprises a polymer with a glass transition temperature of ≦85° C. and an electrically conductive particle. When assembled, the flexible surface primer coating serves to reduce strain at the interface between the active material and current collector. The primer coating and the electroactive material remain intact on the surface of the current collector after at least one cycle of lithium ion insertion and deinsertion in the electrode, thus minimizing or preventing charge capacity loss in the electrochemical cell. Methods for making such materials and using such coatings to minimize charge capacity fade in lithium ion electrochemical cells are likewise provided.

Patent Agency Ranking