摘要:
A display device including a transparent substrate, and a plurality of thin film transistors formed on the transparent substrate, wherein each of the thin film transistors have a gate electrode, a source electrode and a drain electrode, a first semiconductor film, an insulation film, a second semiconductor film, and a third semiconductor film. The third semiconductor film is connected with the source electrode and the drain electrode by an ohmic contact, and the second semiconductor film is formed below the third semiconductor film and has a resistance higher than resistance of the third semiconductor film.
摘要:
Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
摘要:
A display device having a photosensor which exhibits excellent photoelectric conversion efficiency is provided. In a display device which forms photosensors on a substrate thereof, the photosensor is formed by sequentially stacking a gate electrode, a gate insulation film and a semiconductor layer in such an order or in an opposite order from a substrate side, and electrodes are connected to both sides of the semiconductor layer respectively, the semiconductor layer is formed of a stacked body consisting of a crystalline semiconductor layer and an amorphous semiconductor layer, and the crystalline semiconductor layer is arranged on the gate insulation film side.
摘要:
An object of the present invention is to provide a display device where small thin film transistors with a lower off current can be formed. The present invention provides a display device where thin film transistors are formed on a substrate, and in the above described thin film transistors, a gate electrode is formed on a semiconductor layer with a gate insulating film in between, the above described thin film transistors are formed of at least a first thin film transistor and a second thin film transistor, and the above described semiconductor layer is divided into individual regions for each film transistor, the above described semiconductor layer is provided with a common region shared either by the drain region of the above described first thin film transistor and the source region of the above described second thin film transistor or by the source region of the above described first thin film transistor and the drain region of the above described second thin film transistor, in the first thin film transistor and the second thin film transistor, the semiconductor layer is provided with LDD regions where the impurity concentration is lower than in the above described drain region and the above described source region, between the channel region and the drain region, as well as between the channel region and the source region, and the above described gate electrode is formed so as to overlap with the above described common region in the above described semiconductor layer and face at least the above described channel region and the above described LDD regions of the above described first thin film transistor and the above described channel region and the above described LDD regions of the above described second thin film transistor.
摘要:
A display device includes a thin film transistor above a substrate, in which the thin film transistor is configured to include a gate electrode, a gate insulating film formed to cover the gate electrode, a semiconductor layer formed to stride over the gate electrode on the gate insulating film, an inter-layer insulating film formed to cover the semiconductor layer, and a pair of electrodes formed to be connected to each of sides of the semiconductor layer interposing the gate electrode therebetween through contact holes formed through the inter-layer insulating film, high concentration impurity layers are formed at each connecting portion of the electrodes of the semiconductor layer, and an annular low-concentration impurity layer is formed to surround at least one of the high concentration impurity layers.
摘要:
The display device having a thin film transistor formed on a substrate including a display portion is provided. The thin film transistor including: a gate electrode; a gate insulating film formed so as to cover the gate electrode; a semiconductor laminated film formed on top the gate insulating film so as to extend over the gate electrode, the semiconductor laminated film being formed by laminating at least a polycrystalline semiconductor film and an amorphous semiconductor film, a first electrode and a second electrode disposed on top of the semiconductor laminated film so as to be opposed to each other across a region superposing the gate electrode. In the display device, the semiconductor laminated film is formed immediately below a wiring extending from the first electrode and immediately below a wiring extending from the second electrode.
摘要:
A liquid crystal display device capable of preventing a semiconductor element from malfunctioning due to the light which enters the semiconductor element from the display side opposed to a light source side. The liquid crystal display device comprises a first substrate (11), a second substrate and a liquid crystal sandwiched between the first substrate and the second substrate. The liquid crystal display device further comprises semiconductor elements (FG) formed over the first substrate and arranged in a matrix, and a light shielding film (BS) formed over the first substrate for blocking the light which would enter the semiconductor elements from the display face of the liquid crystal display device if not blocked.
摘要:
A display device which uses a TFT having a gate electrode film thereof arranged on a light source side can also suppress the increase of parasitic capacitance while suppressing the generation of a light leakage current. On at least one end of the TFT, between a high concentration region which constitutes a source region or a drain region and a channel region, a first low concentration region which is arranged on a high concentration region side and exhibits low impurity concentration and a second low concentration region which exhibits impurity concentration even lower than the impurity concentration of the first low concentration region are provided in this order.
摘要:
A second insulation layer which is formed by stacking a plurality of layers made of different materials in a mutually contact manner is formed such that the second insulation layer covers a source region and a drain region and also covers a gate electrode from above. A first contact hole which reaches one of the source region and the drain region and a recessed portion which is arranged above the gate electrode but is not communicated with the gate electrode are simultaneously formed on the second insulation layer by dry etching. A first line layer is formed so as to cover the first contact hole. After forming the first line layer, a bottom surface of the recessed portion is etched by dry etching thus forming a second contact hole which reaches the gate electrode in the first and second insulation layers. A second line layer is formed on the second contact hole.
摘要:
A technique that can prevent breakdown of a thin film transistor due to static electricity is provided. A manufacturing method of a display device includes, in forming a plurality of thin film transistors constituting a drive circuit outside a display region as an assembly of pixels, forming a first wiring that is connected to gate electrodes of the thin film transistors to cause the thin film transistors to perform generating operation of a drive signal and a second wiring that connects gate electrodes of the thin film transistors adjacent to one another in the forming region of the drive unit in the same layer as the first wiring, and cutting the second wiring after forming the connected thin film transistors.