Abstract:
A method for forming a semiconductor device includes incorporating recombination center atoms into a semiconductor substrate. The method further includes, after incorporating the recombination center atoms into the semiconductor substrate, implanting noble gas atoms into a doping region of a diode structure and/or a transistor structure, the doping region being arranged at a surface of the semiconductor substrate.
Abstract:
A semiconductor device includes a semiconductor body and a first portion including silicon and nitrogen. The first portion is in direct contact with the semiconductor body. A second portion including silicon and nitrogen is in direct contact with the first portion. The first portion is between the semiconductor body and the second portion. An average silicon content in the first portion is higher than in the second portion.
Abstract:
A method for manufacturing a high-voltage semiconductor device includes exposing a semiconductor substrate to a plasma to form a protective substance layer on the semiconductor substrate. A semiconductor device includes a semiconductor substrate and a protective substance layer on the semiconductor substrate.
Abstract:
A semiconductor device includes a glass piece and an active semiconductor element formed in a single-crystalline semiconductor portion. The single-crystalline semiconductor portion has a working surface, a rear side surface opposite to the working surface and an edge surface connecting the working and rear side surfaces. The glass piece has a portion extending along and in direct contact with the edge surface of the single-crystalline semiconductor portion.
Abstract:
A semiconductor device includes a single crystalline semiconductor body with a first surface and a second surface parallel to the first surface. The semiconductor body contains chalcogen atoms and a background doping of pnictogen and/or hydrogen atoms. A concentration of the chalcogen atoms is at least 1E12 cm−3. A ratio of the chalcogen atoms to the atoms of the background doping is in a range from 1:9 to 9:1.
Abstract:
A semiconductor substrate includes a first side and a second side opposite the first side. A semiconductor material extends between the first and second sides and is devoid of active device regions. The semiconductor material has a first region and a second region. The first region extends from the first side to a depth into the semiconductor material and includes chalcogen dopant atoms which provide a base doping concentration for the first region. The second region extends from the first region to the second side and is devoid of base doping. Further, a power semiconductor component is provided.
Abstract:
A power semiconductor device has a semiconductor body having a first surface and a second surface that runs substantially parallel to the first surface. A first metallization is arranged on the first surface. A second metallization is arranged on the second surface. The semiconductor body includes an n-doped first semiconductor region spaced apart from the first metallization and having a first maximum doping concentration, an n-doped second semiconductor region having a second maximum doping concentration higher than the first maximum doping concentration and adjoining the first semiconductor region, and a third semiconductor region in ohmic contact with the second metallization, arranged between the second metallization and the second semiconductor region, and adjoining the second semiconductor region. The second semiconductor region is made of a semiconductor material which includes electrically active chalcogen impurities as donors. At least 90% of the electrically active chalcogen impurities form isolated defects in the semiconductor material.
Abstract:
A semiconductor body has a first side, second side, lateral edge, active area, edge termination between the active area and the lateral edge, and drift region of a first conductivity type. The edge termination includes a step formed in the semiconductor body between the first side and the lateral edge. The step includes a lateral surface extending up to the first side and a bottom surface extending up to the lateral edge. A first doping zone of a second conductivity type is formed in the semiconductor body along the lateral surface of the step and forms a pn-junction with the drift region. A second doping zone of the first conductivity type is formed in the semiconductor body at least along a part of the bottom surface of the step and extends up to the lateral edge, wherein the second doping zone is in contact with the drift region.