摘要:
By using at least one of a processor device and model transistor cells, a set of design parameters for at least one of a transistor cell and a drift structure of a wide band-gap semiconductor device is determined, wherein an on state failure-in-time rate and an off state failure-in-time rate of a gate dielectric of the transistor cell are within a same order of magnitude for a predefined on-state gate-to-source voltage, a predefined off-state gate-to-source voltage, and a predefined off-state drain-to-source voltage.
摘要:
A semiconductor device includes a trench extending from a first surface into a SiC semiconductor body. The trench has a first sidewall, a second sidewall opposite to the first sidewall, and a trench bottom. A gate electrode is arranged in the trench and is electrically insulated from the SiC semiconductor body by a trench dielectric. A body region of a first conductivity type adjoins the first sidewall. A shielding structure of the first conductivity type adjoins at least a portion of the second sidewall and the trench bottom. A first section of the trench bottom and a second section of the trench bottom are offset to one another by a vertical offset along a vertical direction extending from the first surface to a second surface of the SiC semiconductor body opposite to the first surface.
摘要:
A semiconductor device includes trench structures that extend from a first surface into a semiconductor body. The trench structures include a gate structure and a contact structure that extends through the gate structure, respectively. Transistor mesas are between the trench structures. Each transistor mesa includes a body zone forming a first pn junction with a drift structure and a second pn junction with a source zone. Diode regions directly adjoin one of the contact structures form a third pn junction with the drift structure, respectively.
摘要:
A vertical transistor device includes a silicon-carbide substrate, a gate trench formed in the silicon-carbide substrate, a body region adjacent the gate trench, a source region adjacent the gate trench and above the body region, and a dielectric material covering a bottom and a sidewall of the gate trench. A thickness of the dielectric material is greater at the bottom of the gate trench than along the sidewall of the gate trench. Further vertical transistor device embodiments and corresponding methods of manufacture are also described.
摘要:
A silicon-carbide semiconductor substrate having a plurality of first doped regions being laterally spaced apart from one another and beneath a main surface, and a second doped region extending from the main surface to a third doped region that is above the first doped regions is formed. Fourth doped regions extending from the main surface to the first doped regions are formed. A gate trench having a bottom that is arranged over a portion of one of the first doped regions is formed. A high-temperature step is applied to the substrate so as to realign silicon-carbide atoms along sidewalls of the trench and form rounded corners in the gate trench. A surface layer that forms along the sidewalls of the gate trench during the high-temperature step from the substrate is removed.
摘要:
A semiconductor device includes a transistor cell with a stripe-shaped trench gate structure that extends from a first surface into a semiconductor body. A gate connector structure at a distance to the first surface is electrically connected to a gate electrode in the trench gate structure. A gate dielectric separates the gate electrode from the semiconductor body. First sections of the gate dielectric outside a vertical projection of the gate connector structure are thinner than second sections within the vertical projection of the gate connector structure.
摘要:
A semiconductor device includes trench structures that extend from a first surface into a semiconductor body. The trench structures include a gate structure and a contact structure that extends through the gate structure, respectively. Transistor mesas are between the trench structures. Each transistor mesa includes a body zone forming a first pn junction with a drift structure and a second pn junction with a source zone. Diode regions directly adjoin one of the contact structures form a third pn junction with the drift structure, respectively.
摘要:
A semiconductor device includes a SiC substrate and a plurality of transistor cells formed in the SiC substrate and electrically connected in parallel to form a transistor. Each transistor cell includes a gate structure including a gate electrode and a gate dielectric stack separating the gate electrode from the SiC substrate. The gate dielectric stack includes a ferroelectric insulator. The transistor has a specified operating temperature range, and the ferroelectric insulator is doped with a doping material such that the Curie temperature of the ferroelectric insulator is in a range above the specified operating temperature range of the transistor. A corresponding method of producing the semiconductor device is also described.
摘要:
A semiconductor component includes: gate structures extending from a first surface into an SiC semiconductor body; a drift zone of a first conductivity type formed in the SiC semiconductor body; first mesas and second mesas arranged between the gate structures in the SiC semiconductor body; body areas of a second conductivity type arranged in the first mesas and the second mesas, the body areas each adjoining a first side wall of one of the gate structures; first shielding areas of the second conductivity type adjoining a second side wall of one of the gate structures; second shielding areas of the second conductivity type adjoining the body areas in the second mesas; and diode areas of the conductivity type of the drift zone, the diode areas forming Schottky contacts with a load electrode between the first shielding areas and the second shielding areas.
摘要:
A method includes providing a silicon carbide substrate, wherein a gate trench extends from a main surface of the silicon carbide substrate into the silicon carbide substrate and wherein a gate dielectric is formed on at least one sidewall of the gate trench, and forming a gate electrode in the gate trench, the gate electrode including a metal structure and a semiconductor layer between the metal structure and the gate dielectric.