Abstract:
A jacket of biological compatible material has an internal volume dimensioned for an apex of the heart to be inserted into the volume and for the jacket to be slipped over the heart. The jacket has a longitudinal dimension between upper and lower ends sufficient for the jacket to surround a lower portion of the heart with the jacket surrounding a valvular annulus of the heart and further surrounding the lower portion to cover at least the ventricular lower extremities of the heart. The jacket is adapted to be secured to the heart with the jacket surrounding at least the valvular annulus and the ventricular lower extremities. The jacket is adjustable on the heart to snugly conform to an external geometry of the heart and assume a maximum adjusted volume for the jacket to constrain circumferential expansion of the heart beyond the maximum adjusted volume during diastole and to permit unimpeded contraction of the heart during systole.
Abstract:
The present invention provides an optical system that includes an array of opto-electronic devices, an array of micro lenses, and a fore optic. The array of opto-electronic devices lie substantially along a plane, but the fore optic has a non-planar focal field. To compensate for the non-planar focal field of the fore optic, each opto-electronic device has a corresponding micro lens. Each micro lens has a focal length and/or separation distance between it and it respective opto-electronic device, which compensates for the non-planar focal field of the fore optic. The focal lengths of these lenses may differ relative to one another. As a result, light that is provided by the fore optic is reconfigured by the micro lenses having various focal lengths to be substantially focused along the plane of the array of opto-electronic devices. Various arrangements of microlenses, placing lenses on standoffs or posts, forming of optical waveguides, lens fabrication, wafer integration of micro-optics, and optical coupling are noted.
Abstract:
A device for treating cardiac disease of a heart having an upper portion and a lower portion divided by an A-V groove, the device including a jacket adapted to be secured to the heart, and a non-adherent material in association with the jacket. The jacket is fabricated from a flexible material defining a volume between an upper and a lower end, the jacket being adapted to be adjusted on the heart to snugly conform to an external geometry of the heart and assume a maximum adjusted volume for the jacket to constrain expansion of the heart beyond the maximum adjusted volume during diastole and permit substantially unimpeded contraction of the heart during systole. As a result of the flexible material, the jacket allows unimpeded diastolic filling of the heart. Also described is a method for treating cardiac disease including surgically accessing the heart, applying the treatment device of the invention, securing the treatment device to the heart, and surgically closing access to the heart while leaving the treatment device on the heart.
Abstract:
A device for treating cardiac disease of a heart having an upper portion and a lower portion divided by an A-V groove, the device including a jacket adapted to be secured to the heart, and a non-adherent material in association with the jacket. The jacket is fabricated from a flexible material defining a volume between an upper and a lower end, the jacket being adapted to be adjusted on the heart to snugly conform to an external geometry of the heart and assume a maximum adjusted volume for the jacket to constrain expansion of the heart beyond the maximum adjusted volume during diastole and permit substantially unimpeded contraction of the heart during systole. As a result of the flexible material, the jacket allows unimpeded diastolic filling of the heart. Also described is a method for treating cardiac disease including surgically accessing the heart, applying the treatment device of the invention, securing the treatment device to the heart, and surgically closing access to the heart while leaving the treatment device on the heart.
Abstract:
A scanner can read machine-readable code on an object. A scanner has a scanning device, a data device, and a registration device. The scanning device can repetitively scan the code and provide a scan signal repetitively corresponding to at least fragments of the code. The data device is coupled to the scanning device and responds to its scan signal for repetitively storing it. The registration device is coupled to the data device for reconstructing the code from at least two of the fragments of the code by relatively shifting the code fragments until they are in registration.
Abstract:
A scanner can read machine-readable code on an object. A scanner has a scanning device, a data device, and a registration device. The scanning device can repetitively scan the code and provide a scan signal repetitively corresponding to at least fragments of the code. The data device is coupled to the scanning device and responds to its scan signal for repetitively storing it. The registration device is coupled to the data device for reconstructing the code from at least two of the fragments of the code. The registration device relatively shifts the code fragments until they are in registration. Thus one of the fragments provides a beginning portion of the code and the other an ending portion. Both fragments provide a registered middle portion of the code.
Abstract:
A valve mounting apparatus having an elongated tubular mesh structure with proximal and distal ends, a cardiovascular structure engagement region disposed between the proximal and distal ends, and a lumen therethrough, the distal end of the structure including a valve engagement region that is configured to engage a first end of a prosthetic valve, the mesh structure being configured to transition from a pre-deployment configuration, wherein the structure is capable of being disposed at a cardiovascular valve region, such as a valve annulus region, to a post-deployment expanded configuration, wherein the cardiovascular structure engagement region is anchored to the cardiovascular valve region.
Abstract:
A digital microphone array is configured in an open geometry such as a sphere with a large number of inexpensive microphone elements mounted in opposite-facing pairs. The microphone array with DSP is intended to be placed in a three-dimensional sound field, such as a concert hall or film location, and to completely isolate all sound sources from each other while maintaining their placement in a coherent sound field including reverberance.
Abstract:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
Abstract:
A hybrid prolapse repair material comprising a polypropylene and a graft body attached together. Attachments are provided for detachably attaching a repair material to a needle. A needle and a system for using the needle are contemplated to get repair material closer to the ischial spine. Graft to arm attachment concepts are taught to couple a mesh to a graft body. Additionally, a hysterectomy tool is provided to allow a surgeon to track vital organs.