摘要:
In a metal gate replacement process, a cup-shaped gate metal oxide dielectric may have vertical portions that may be exposed to a reduction reaction. As a result of the reduction reaction, the vertical portions may be converted to metal, which adds to the existing gate electrode. In some cases, removing the vertical dielectric portions reduces fringe capacitance and may also advantageously slightly increased underdiffusion without adding heat, in some embodiments.
摘要:
A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
摘要:
A method of protecting a sensitive layer from harsh chemistries. The method includes forming a first sensitive layer, forming a second layer upon the first layer, then forming a third layer over the second layer. The third layer is utilized as a mask during patterning of the second layer. During patterning, however, the second layer is only partially etched, thus leaving a buffer layer overlying the first layer. The third layer is completely removed while the buffer layer protects the first layer from the harsh chemicals that are utilized to remove the third layer. Then, the buffer layer is carefully removed down to the surface of the first layer.
摘要:
At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
摘要:
A method for making a semiconductor device is described. In that method, a metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the sides of the masking layer are lined with a sacrificial layer.
摘要:
A high-K thin film patterning solution is disclosed to address structural and process limitations of conventional patterning techniques. Subsequent to formation of gate structures adjacent a high-K dielectric layer, a portion of the high-K dielectric layer material is reduced, preferably via exposure to hydrogen gas, to form a reduced portion of the high-K dielectric layer. The reduced portion may be selectively removed utilizing wet etch chemistries to leave behind a trench of desirable geometric properties.
摘要:
A laser-assisted direct imprint process enables direct transfer of patterns on a contact mold to molten semiconductor material. During the pattern transfer, sonic energy may be applied to improve the efficacy of the pattern transfer.
摘要:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
摘要:
A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.