摘要:
A sheet media identification method works out the primary differentiation of the density of each pixel of a transmission image of a bill (FIG. 5, S21), followed by simply binarizing the differentiation result by comparing it with a predetermined threshold value to extract the contour lines of the bill. A Hough-transform is then applied to the binarized contour lines to extract the contour lines passing through the same point on a Hough-plane as the disconnected elements of a single line, followed by extracting a rectangle surrounded by the straight lines corresponding to the points obtained by the Hough-transform. If the number of dots in the non-overlapping part of the rectangle is not less than a predetermined threshold value, cuts out the non-overlapping part as the image of the bill, followed by comparing the cut-out image with a reference image to define the type of the bill.
摘要:
A semiconductor device is provided which is capable of improving its reliability by using a material having a high relative dielectric constant as a material for its gate insulating film, by suppressing degradation of an EOT (Equivalent oxide Thickness) and by preventing crystallization of the material having a high relative dielectric constant. The semiconductor device (Field Effect Transistor) has a silicon substrate, a seed layer made up of silicon oxide, a gate insulating film made of amorphous hafnium aliminate and a gate electrode made up of polycrystalline silicon formed the gate insulating film. The gate insulating film is so formed that a hafnium concentration decreases monotonously or step by step, whereas an aluminum concentration increases monotonously or step by step along a direction of a thickness of the gate insulating film from the silicon substrate side toward the gate electrode. In a boundary region between a lower layer side region and an upper layer side region in the gate insulating film, the hafnium and aluminum concentrations change continuously.
摘要:
A method for manufacturing a high dielectric constant insulating film made of a metal oxide on a silicon substrate is provided using a material gas mixture containing an oxidizing agent without forming silicon oxide layer on a silicon substrate. The manufacturing method includes the steps of placing the semiconductor substrate into a reaction chamber; introducing an organic metal material, oxidizing agent, and a material having a reducing action; and forming a high dielectric constant gate insulating film on the semiconductor substrate by a chemical reaction in the reaction chamber.
摘要:
A method of producing a semiconductor device includes a heat-treating step of heat-treating an HSG'ed capacitor electrode in a dopant gas which does not form a reaction product with silicon. In the heat-treating step, heat treatment is performed in an atmosphere containing the dopant gas of AsH3 in a clean condition such that no oxide film is formed on the surface of each HSG after the HSG is formed. The heat treatment is carried out at a temperature between 550 and 800° C. so that a dopant of arsenic (As) at a high concentration is introduced into the HSG 2a without reducing the size of the HSG 2a by the heat treatment to thereby suppress reduction in capacitance due to depletion. In this condition, when the dopant of As is introduced into the interior of the HSG 2a to form a diffusion region P1, the size of the HSG 2a is not reduced after the diffusion.
摘要:
The invention provides novel benzindole derivatives, processes for producing them, as well as a neuroprotective agent, an agent to prevent or treat diseases involving the degeneration, retraction or death of neurons, and an analgesic, each containing the benzindole derivatives as an active ingredient. ##STR1##
摘要:
A method and resulting structure for fabricating interconnects through an integrated circuit. The method includes adding more power lines 80, 100, 151 and/or increasing the width of power lines 120 and/or adding a power bus 140 near regions of high current flow. The resulting structure also provides more metallization near regions of high current flow. Similar to the method, the resulting structure may include additional power lines 80, 100, 151 and/or wider power lines 120 and/or a power bus 140 to increase the amount of metallization. An improved routing technique is also provided. Such routing technique includes providing an initial Ucs value and then adding additional lines near high current regions to decrease the Ucs value.
摘要:
A method for depositing a film includes: (a) processing a wafer, including forming a high dielectric constant film on a first wafer; and achieving nitridation of the high dielectric constant film formed on the first wafer; and (b) performing coating process including forming a high dielectric constant film on a second wafer; and achieving nitridation of the high dielectric constant film formed on the second wafer. The processing the wafer and the performing the coating process are carried out in the same reaction chamber. The coating process is carried out before the processing the wafer.
摘要:
The present invention provides organic EL devices which have on their anode at least a light-emitting layer, an electron-injecting-transporting layer, and a cathode giving an elongated lifetime, organic EL devices giving a superior whiteness, a higher light-emitting efficiency, and an elongated lifetime compared to conventional ones, and color displays using such organic EL devices. On anode (10), hole-injecting-transporting layer (11), light-emitting layer (12), non-light-emitting layer (13), electron-injecting-transporting layer (14), and cathode (15) in this order are laminated. Otherwise, on an anode, a hole-injecting layer, a hole-transporting layer, a red light-emitting layer, a blue light-emitting layer, an electron-transporting layer, an electron-injecting layer, and a cathode in this order are laminated.
摘要:
A P-type MOSFET 120 includes a semiconductor substrate (N-well 102b); a gate insulating film formed on the semiconductor substrate, composed of a high-dielectric-constant film 108 which contains a silicate compound containing a first element selected from the group consisting of Hf, Zr and any of lanthanoids, together with N; a gate electrode formed on the gate insulating film, and is configured by a polysilicon film 114 containing a P-type impurity; and a blocking oxide film 110 formed between the gate insulating film and the gate electrode, blocking a reaction between the first element and the polysilicon film 114, and having a relative dielectric constant of 8 or above.