摘要:
A trench capacitor comprises a semiconductor substrate, a trench, formed in the semiconductor substrate, having upper and lower portions, a first doped polysilicon layer filled in the lower portion through a first dielectric film and doped with a first impurity having a first conductivity type, at least a second doped polysilicon layer filled in the upper portion through a second dielectric film and doped with a second impurity different from the first impurity, the second impurity having the first conductivity type, and a buried strap layer provided on the second doped polysilicon layer and composed of the first doped polysilicon layer.
摘要:
A welding comprises placing the end of a stud supported by a welding gun on a welding portion of a workpiece, producing an arc discharge across the stud and the workpiece, melting the end of the stud and a portion of the workpiece and bringing the end of the stud so as to abut on the melted portion of the workpiece. A hollow cylindrical member 21 is prepared so that the material has a larger inside diameter than an end 20 of a stud 19 and is made of a magnetic permeable material is prepared. During the arc discharge, the cylindrical member 21 is placed so that the hollow portion is positioned on the side of the workpiece opposite to the stud and corresponding to the end of the stud.
摘要:
According to one embodiment, a method of operating a semiconductor memory device is disclosed. The method can include storing read-only data in at least one selected from a memory cell of an uppermost layer and a memory cell of a lowermost layer of a plurality of memory cells connected in series via a channel body. The channel body extends upward from a substrate to intersect a plurality of electrode layers stacked on the substrate. The method can include prohibiting a data erase operation of the read-only memory cell having the read-only data stored in the read-only memory cell.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes: a first stacked body; a memory film; a first channel body layer provided inside the memory film; an interlayer insulating film provided on the first stacked body; a second stacked body having a select gate electrode layer, and a second insulating layer; a gate insulating film provided on a side wall of a second hole communicating with the first hole and penetrating the second stacked body and the interlayer insulating film in a stacking direction of the second stacked body; and a second channel body layer provided inside the gate insulating film in the second hole. A first pore diameter of the second hole at an upper end of the select gate electrode layer is smaller than a second pore diameter of the second hole at an lower end of the select gate electrode layer.
摘要:
According to one embodiment, a semiconductor memory device includes a stacked body, a semiconductor pillar, a charge storage layer, a tunneling layer, a dividing trench and a first heating unit. The stacked body includes a plurality of first insulating films stacked alternately with a plurality of electrode films. The semiconductor pillar pierces the stacked body. The charge storage layer is provided between the electrode films and the semiconductor pillar. The tunneling layer is provided between the charge storage layer and the semiconductor pillar. The dividing trench is provided between the semiconductor pillars in one direction orthogonal to a stacking direction of the stacked body to divide the electrode films. The first heating unit is provided in an interior of the dividing trench.
摘要:
According to one embodiment, a columnar semiconductor, a floating gate electrode formed on a side surface of the columnar semiconductor via a tunnel dielectric film, and a control gate electrode formed to surround the floating gate electrode via a block dielectric film are provided.
摘要:
A non-volatile semiconductor storage device includes a plurality of memory strings each having a plurality of electrically rewritable memory cells connected in series. Each of the memory strings comprising: a first semiconductor layer including a columnar portion extending in a vertical direction with respect to a substrate; a plurality of first conductive layers formed to surround side surfaces of the columnar portions via insulation layers, and formed at a certain pitch in the vertical direction, the first conductive layers functioning as floating gates of the memory cells; and a plurality of second conductive layers formed to surround the first conductive layers via insulation layers, and functioning as control electrodes of the memory cells. Each of the first conductive layers has a length in the vertical direction that is shorter than a length in the vertical direction of each of the second conductive layers.
摘要:
According to one embodiment, a control gate is formed on the semiconductor substrate and includes a cylindrical through hole. A block insulating film, a charge storage film, a tunnel insulating film, and a semiconductor layer are formed on a side surface of the control gate inside the through hole. The tunnel insulating film comprises a first insulating film having SiO2 as a base material and containing an element that lowers a band gap of the base material by being added. A density and a density gradient of the element monotonously increase from the semiconductor layer toward the charge storage film.
摘要:
A control circuit is configured to execute an erasing operation on a selected cell unit in a selected memory block. In the erasing operation, the control circuit raises the voltage of the bodies of the first memory transistors included in the selected cell unit to a first voltage, sets the voltage of the bodies of the first memory transistors included in the non-selected cell unit to a second voltage lower than the first voltage, and applies a third voltage equal to or lower than the second voltage to the gates of the first memory transistors included in the selected cell unit and the non-selected cell unit.
摘要:
A nonvolatile semiconductor memory device includes: a semiconductor substrate; a stacked body provided on the semiconductor substrate, the stacked body having electrode films and insulating films being alternately stacked; a first and second semiconductor pillars; and a first and second charge storage layers. The first and second semiconductor pillars are provided inside a through hole penetrating through the stacked body in a stacking direction of the stacked body. The through hole has a cross section of an oblate circle, when cutting in a direction perpendicular to the stacking direction. The first and second semiconductor pillars face each other in a major axis direction of the first oblate circle. The first and second semiconductor pillars extend in the stacking direction. The first and second charge storage layers are provided between the electrode film and the first and second semiconductor pillars, respectively.