Abstract:
A memory device includes a magnetic tunnel junction (MTJ) bitcell. The MTJ bitcell includes a first MTJ and a second MTJ. The memory device further includes programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell. The non-reversible state corresponds to a value of the MTJ bitcell that is determined by comparing a first value read at the first MTJ and a second value read at the second MTJ.
Abstract:
One feature pertains to an integrated circuit that includes an antifuse having a conductor-insulator-conductor structure. The antifuse includes a first conductor plate, a dielectric layer, and a second conductor plate, where the dielectric layer is interposed between the first and second conductor plates. The antifuse transitions from an open circuit state to a closed circuit state if a programming voltage VPP greater than or equal to a dielectric breakdown voltage VBD of the antifuse is applied to the first conductor plate and the second conductor plate. The first conductor plate has a total edge length that is greater than two times the sum of its maximum width and maximum length dimensions. The first conductor plate's top surface area may also be less than the product of its maximum length and maximum width.
Abstract:
Material surrounding a magnetic tunnel junction (MTJ) device region of a multi-layer starting structure is etched, forming an MTJ device pillar having an MTJ layer with a chemically damaged peripheral edge region. De-nitridation or de-oxidation, or both, restore the chemically damaged peripheral region to form an edge-restored MTJ layer. An MTJ edge restoration assist layer is formed on the edge-restored MTJ layer. An MTJ-edge-protect layer is formed on the insulating MTJ-edge-restoration-assist layer.
Abstract:
A memory device includes a magnetic tunnel junction (MTJ) bitcell. The MTJ bitcell includes a first MTJ and a second MTJ. The memory device further includes programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell. The non-reversible state corresponds to a value of the MTJ bitcell that is determined by comparing a first value read at the first MTJ and a second value read at the second MTJ.
Abstract:
In a particular embodiment, a method of forming a magnetic tunnel junction (MTJ) device includes forming an MTJ cap layer on an MTJ structure and forming a top electrode layer coupled to the MTJ cap layer. The top electrode layer includes at least two layers and one layer of the two layers includes a nitrified metal.
Abstract:
Disclosed is apparatus including a vertical spiral inductor. The vertical spiral inductor may include a plurality of dielectric layers formed on a substrate, a plurality of conductive layers, each of the plurality of conductive layers disposed on each of the plurality of dielectric layers, a plurality of insulating layers, each of the plurality of insulating layers disposed on each of the plurality of conductive layers, wherein each of the plurality of insulating layers separates each of the plurality of dielectric layers. A first spiral coil is arranged in a first plane perpendicular to the substrate, where the first spiral coil is formed of first portions of the plurality of conductive layers and a first set of vias of a plurality of vias, configured to connect the first portions of the plurality of conductive layers.
Abstract:
A vertical transport field effect transistor (VTFET) comprising: a plurality of FET structures on a substrate; the plurality of FET structures comprising: a first n-type FET structure oriented in a first plane direction relative to the substrate; and a first p-type FET structure oriented in a second plane direction relative to the substrate; wherein the first n-type FET structure and the first p-type FET structure each comprises a FIN having a FIN height, H, wherein H defines the FIN height orthogonal to a surface of the substrate, each FIN being configured to transport charge carriers orthogonal to the surface of the substrate along the FIN height.
Abstract:
A vertical transport field effect transistor (VTFET) comprising: a plurality of FET structures on a substrate; the plurality of FET structures comprising: a first n-type FET structure oriented in a first plane direction relative to the substrate; and a first p-type FET structure oriented in a second plane direction relative to the substrate; wherein the first n-type FET structure and the first p-type FET structure each comprises a FIN having a FIN height, H, wherein H defines the FIN height orthogonal to a surface of the substrate, each FIN being configured to transport charge carriers orthogonal to the surface of the substrate along the FIN height.
Abstract:
A stacked gate-all-around (GAA) complementary field-effect transistor (CFET) includes a first GAA FET of a first type and a second GAA FET of a second type. Each of the first GAA FET and the second GAA ITT includes at least one three-dimensional (3D) semiconductor slab with a channel region and a first surface. A first gate structure surrounds the channel region in the first GAA FET, and a second gate structure surrounds the channel region in the second GAA FET. The first gate structure is stacked opposite the second gate structure in a direction orthogonal to the first surface. In some examples, a first crystal structure of the 3D semiconductor slab in the first GAA FET has a first orientation, and a second crystal structure of the 3D semiconductor slab in the second GAA FET has a different orientation for improved carrier mobility.
Abstract:
Certain aspects are directed to a static random access memory (SRAM) including an SRAM cell with a pass-gate (PG) transistor having increased threshold voltage to improve the read margin of the SRAM cell. The SRAM generally includes a first SRAM cell having a pull-down (PD) transistor and a PG transistor coupled to the PD transistor. In certain aspects, the SRAM includes a second SRAM cell, the second SRAM cell being adjacent to the first SRAM cell and having a PD transistor and a PG transistor coupled to the PD transistor of the second SRAM cell. The SRAM may also include a gate contact region coupled to a gate region of the PG transistor of the first SRAM cell, wherein at least a portion of the gate contact region is offset from a midpoint between the first SRAM cell and the second SRAM cell.