摘要:
Metal-oxide semiconductor (MOS) standard cells employing electrically coupled source regions and supply rails to relax source-drain tip-to-tip spacing between adjacent MOS standard cells are disclosed. In one aspect, a MOS standard cell includes supply rails disposed in a first metal layer and along respective axes in an X-axis direction. The MOS standard cell includes metal lines disposed in the first metal layer and along respective axes in the X-axis direction. The MOS standard cell includes a source region formed in a semiconductor substrate beneath the first metal layer and adjacent to a plane in an X-Z-axis direction disposed between a supply rail and the source region. The source region is electrically coupled to the corresponding supply rail. Forming the source region in this manner allows the MOS standard cell to be disposed adjacent to other MOS standard cells while achieving the minimum required source-drain tip-to-tip spacing.
摘要:
A method includes forming a first spacer structure on a dummy gate of a semiconductor device and forming a sacrificial spacer on the first spacer structure. The method also includes etching a structure of the semiconductor device to create an opening, removing the sacrificial spacer via the opening, and depositing a material to close to define a gap.
摘要:
A device includes a substrate, a first nanowire field effect transistor (FET), and a second nanowire FET positioned between the substrate and the first nanowire FET. The device also includes a first nanowire electrically coupled to the first nanowire FET and to the second nanowire FET.
摘要:
A device includes a substrate, a first nanowire field effect transistor (FET), and a second nanowire FET positioned between the substrate and the first nanowire FET. The device also includes a first nanowire electrically coupled to the first nanowire FET and to the second nanowire FET.
摘要:
In a particular embodiment, a method includes forming a second hardmask layer adjacent to a first sidewall structure and adjacent to a mandrel of a semiconductor device. A top portion of the mandrel is exposed prior to formation of the second hardmask layer. The method further includes removing the first sidewall structure to expose a first portion of a first hardmask layer. The method also includes etching the first portion of the first hardmask layer to expose a second portion of a dielectric material. The method also includes etching the second portion of the dielectric material to form a first trench. The method also includes forming a first metal structure within the first trench.
摘要:
A semiconductor device includes a gate and a first active contact adjacent to the gate. Such a device further includes a first stacked contact electrically coupled to the first active contact, including a first isolation layer on sidewalls electrically isolating the first stacked contact from the gate. The device also includes a first via electrically coupled to the gate and landing on the first stacked contact. The first via electrically couples the first stacked contact and the first active contact to the gate to ground the gate.
摘要:
A semiconductor device includes a transistor having a metal gate, a source, and a drain. The semiconductor device also includes a high resistance metal etch-stop layer positioned above the metal gate of the transistor. The semiconductor device also includes a metal layer formed on the high resistance metal etch-stop layer. The metal layer is positioned above at least one of the source of the transistor or the drain of the transistor.
摘要:
A method includes forming a first metal layer on source/drain regions of an n-type metal-oxide-semiconductor (NMOS) device and on source/drain regions of a p-type MOS (PMOS) device by chemical vapor deposition (CVD) or non-energetic physical vapor deposition (PVD). The method further includes selectively performing a rapid thermal anneal (RTA) process on the first metal layer after forming the first metal layer.
摘要:
Systems and methods for dummy gate tie-offs in a self-aligned gate contact (SAGC) cell are disclosed. In particular, exemplary aspects contemplate a two-part etching process to remove hardmasks formed from different materials from adjacent elements. A metal fill material may then be used to tie off the adjacent elements. The use of the two-part etching process allows SAGC techniques to be used for a first portion of a cell while still providing a technique to allow a tie-off in a second portion of the cell. The tie-off may be used with a dummy gate to provide isolation between cells.
摘要:
An apparatus includes a first interconnect and a first barrier structure. The first barrier structure is in contact with a dielectric material. The apparatus further includes a first protective structure in contact with the first barrier structure and an etch stop layer. An airgap is defined at least in part by the first protective structure and the etch stop layer.