Abstract:
The embodiments described herein describe technologies for memory systems. One implementation of a memory system includes a motherboard substrate with multiple module sockets, at least one of which is populated with a memory module. A first set of data lines is disposed on the motherboard substrate and coupled to the module sockets. The first set of data lines includes a first subset of point-to-point data lines coupled between a memory controller and a first socket and a second subset of point-to-point data lines coupled between the memory controller and a second socket. A second set of data lines is disposed on the motherboard substrate and coupled between the first socket and the second socket. The first and second sets of data lines can make up a memory channel.
Abstract:
A method of operation in a memory device, comprising storing data in a first group of storage locations in the memory device, storing error information associated with the stored data in a second group of storage locations in the memory device, and selectively evaluating the error information based on a state of an error enable bit, the state based on whether a most recent access to the first group of storage locations involved a partial access.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
A method of operation in an integrated circuit (IC) memory device is disclosed. The method includes refreshing a first group of storage rows in the IC memory device at a first refresh rate. A retention time for each of the rows is tested. The testing for a given row under test includes refreshing at a second refresh rate that is slower than the first refresh rate. The testing is interruptible based on an access request for data stored in the given row under test.
Abstract:
A semiconductor memory system includes a first semiconductor memory die and a second semiconductor memory die. The first semiconductor memory die includes a primary data interface to receive an input data stream during write operations and to deserialize the input data stream into a first plurality of data streams, and also includes a secondary data interface, coupled to the primary data interface, to transmit the first plurality of data streams. The second semiconductor memory die includes a secondary data interface, coupled to the secondary data interface of the first semiconductor memory die, to receive the first plurality of data streams.
Abstract:
A memory controller and buffers on memory modules each operate in two modes, depending on the type of motherboard through which the controller and modules are connected. In a first mode, the controller transmits decoded chip-select signals independently to each module, and the motherboard data channel uses multi-drop connections to each module. In a second mode, the motherboard has point-to-point data channel and command address connections to each of the memory modules, and the controller transmits a fully encoded chip-select signal group to each module. The buffers operate modally to correctly select ranks or partial ranks of memory devices on one or more modules for each transaction, depending on the mode.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
A method of operation in an integrated circuit (IC) memory device is disclosed. The method includes refreshing a first group of storage rows in the IC memory device at a first refresh rate. A retention time for each of the rows is tested. The testing for a given row under test includes refreshing at a second refresh rate that is slower than the first refresh rate. The testing is interruptible based on an access request for data stored in the given row under test.
Abstract:
A memory controller and buffers on memory modules each operate in two modes, depending on the type of motherboard through which the controller and modules are connected. In a first mode, the controller transmits decoded chip-select signals independently to each module, and the motherboard data channel uses multi-drop connections to each module. In a second mode, the motherboard has point-to-point data channel and command address connections to each of the memory modules, and the controller transmits a fully encoded chip-select signal group to each module. The buffers operate modally to correctly select ranks or partial ranks of memory devices on one or more modules for each transaction, depending on the mode.