摘要:
Wireless terminals and base stations support multiple modes of control channel operation wherein wireless terminals are allocated different amounts of uplink resources for reporting control information. A set of control channel segments is utilized by a wireless terminal to communicate uplink control information reports to its serving base station attachment point. Full tone and split-tone modes of control channel operation are supported. In full tone mode, a single wireless terminal is allocated each of the control channel segments associated with a single logical tone. In split tone mode, control channel segments associated with a single logical tone are allocated between different wireless terminals, with each of the multiple wireless terminals receiving a different non-overlapping subset of the control channel segments. Logical control channel tones can be dynamically reallocated for full-tone mode use or split tone mode use.
摘要:
Wireless terminal operation is coordinated to be responsive to dynamic communications frequency spectrum reallocation between infrastructure based communications usage and peer to peer communications usage. Methods and apparatus in which mobile nodes switch between cellular and peer to peer communication modes of operation are described. Broadcast signals, e.g., beacon signals, are monitored and detected by the mobile node to ascertain a current spectrum usage designation, and the mobile node switches operational modes in response to detected changes in the broadcast signals.
摘要:
Methods and apparatus supporting peer to peer communications are discussed. A base station, serving as an access node for wireless terminals also communicates information supporting peer to peer communications. A base station transmits a beacon signal conveying information about a peer to peer frequency band and also receives user data from a plurality of wireless terminals, using the base station as a current point of network attachment. In some embodiments, the beacon signal is transmitted into the same frequency band being used for access node based communications and identifies a different frequency band which is to be used as a peer to peer frequency band. Alternatively, or in addition, in support of peer to peer communications, a beacon signal transmission apparatus, a free standing device which doesn't transmit user data, transmits a sequence of beacon signal bursts, each beacon signal burst including at least one high power beacon symbol.
摘要:
Methods and apparatus related to group communications in a wireless communications system, e.g., a peer to peer wireless communications system, are described. Methods and apparatus directed to closed groups, e.g., where the number of group members are fixed at a given time and known to one or more members of the group, are described. Various embodiments are well suited to decentralized peer to peer wireless networks including a plurality of individual traffic resources, e.g., traffic slots and/or traffic segments, which may be independently scheduled in a decentralized manner. Some features and/or aspects are directed to the use of individual group member acknowledgement signaling in response to a transmitted group traffic data signal. By monitoring for anticipated individual group member acknowledgment signals and identifying members which have not signaled a positive acknowledgment, re-transmission can be directed and/or tailored to a subset of the group.
摘要:
A wireless terminal receives base station position over an airlink, determines its relative position with respect to the base station and determines a timing adjustment correction. The wireless terminal applies the determined timing correction to control uplink signaling timing and achieve synchronization at the base station's receiver. The wireless terminal determines its relative velocity with respect to the base station and determines a Doppler shift adjustment which it adds to the uplink carrier frequency or to its baseband signal. A wireless terminal determines the position of a moving base station and determines timing and/or frequency corrections. Base station position is determined from the current time and stored information correlating the base station position with time, e.g., for a geo-synchronous satellite. Base station position information is determined from broadcast information, e.g., GPS base station position, for an aircraft base station. Wireless terminals may be mobile and include a GPS receiver for WIRELESS TERMINAL position determination.
摘要:
Wireless terminals receive beacon signals from other communication devices and make transmission decisions based on priority information communicated by the beacon signals. Priority information communicated in a beacon signal includes, e.g., one of device priority, user priority and session priority. A wireless terminal compares priority information recovered from received beacon signals with its own current level of priority. A transmission decision based on received priority information includes deciding not to transmit user data when received priority information indicates a higher priority than its own priority level. Another transmission decision based on received priority information includes deciding to transmit user data when the received priority information indicates a lower priority than its own priority level. Other exemplary transmission decisions, performed as a function of priority information from beacon signals, include deciding to perform a transmission power level adjustment and deciding to terminate an ongoing communications session.
摘要:
Aspects relate to mitigating interference in a communication network that does not employ a centralized scheduler. A transmission sent on a subset of resources is evaluated to determine a number of communication pairs that have selected that subset of resources on which to transmit. If there are a large number of communication pairs transmitting on that subset, the transmission is ignored by a receiving device. The number of degrees of freedom that contain energy on the subset is evaluated to determine if an expected number of degrees of freedom that should have energy is met or exceeded. If the expected threshold number is met or exceed, the transmission is decoded by the receiving device, else the transmission is not decoded.
摘要:
Methods and apparatus for efficient two-stage paging wireless communications systems are described. Wireless terminals are assigned to paging groups. A few first paging message information bits are modulated (using non-coherent modulation) into a first paging signal and communicated from a base station to wireless terminals. WTs wake-up, receive the first paging signal and quickly ascertain whether its paging group should expect a second paging signal, if so, the WT is operated to receive the second paging signal; otherwise, the WT goes back to sleep conserving power. The base station modulates (using coherent modulation) a number of second message information bits into a second paging signal and transmits the signal to WTs. From the information in first and second paging signals, a WT can determine that it is the paged WT and process the paging instructions. The intended paged WT can transmit an acknowledgement signal on a dedicated uplink resource.
摘要:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
摘要:
The use of multiple states of mobile communication device operation to allow a single base station to support a relatively large number of mobile nodes is described. The various states require different amounts of communications resources, e.g., bandwidth. Four supported states of operation are an on-state, a hold-state, a sleep-state, and an access-state. Each mobile node in the on-state is allocated communication resources to perform transmission power control signaling, transmission timing control signaling and to transmit data as part of a data uplink communications operation. Each mobile node in the hold-state is allocated communication resources to perform transmission timing control signaling and is provided a dedicated uplink for requesting a state transition and a shared resource for transmitting acknowledgements. In the sleep state a mobile node is allocated minimal resources and does not conduct power control signaling or timing control signaling. Data may be received in the on and hold states.