Abstract:
Formulations and methods of making solar cells are disclosed. In general, the invention provides a solar cell comprising a contact made from a mixture wherein, prior to firing, the mixture comprises at least one aluminum source, at least one boron source, and about 0.1 to about 10 wt % of a glass component. Within the mixture, the overall content of aluminum is about 50 wt % to about 85 wt % of the mixture, and the overall content of boron is about 0.05 to about 20 wt % of the mixture.
Abstract:
Durable hermetic seals between two inorganic substrates are produced using a high-intensity electromagnetic energy source, such as laser, to heat and seal enamel layers with controlled absorption of high-intensity energy source. Durable hermetic seals incorporating electrical feedthroughs are also produced.
Abstract:
Hot-melt sealing glass compositions that include one or more glass frits dispersed in a polymeric binder system. The polymeric binder system is a solid at room temperature, but melts at a temperature of from about 35° C. to about 90° C., thereby forming a flowable liquid dispersion that can be applied to a substrate (e.g., a cap wafer and/or a device wafer of a MEMS device) by screen printing. Hot-melt sealing glass compositions according to the invention rapidly re-solidify and adhere to the substrate after being deposited by screen printing. Thus, they do not tend to spread out as much as conventional solvent-based glass frit bonding pastes after screen printing. And, because hot-melt sealing glass compositions according to the invention are not solvent-based systems, they do not need to be force dried after deposition.
Abstract:
Formulations and methods of making semiconductor devices and solar cell contacts are disclosed. The invention provides a method of making a semiconductor device or solar cell contact including ink-jet printing onto a silicon wafer an ink composition, typically including a high solids loading (20-80 wt %) of glass frit and preferably a conductive metal such as silver. The wafer is then fired such that the glass frit fuses to form a glass, thereby forming a contact layer to silicon.
Abstract:
A method of applying a ceramic coating to a substrate comprises laminating one or more layers of a green ceramic tape to a rigid substrate using a tackifying resin to adhere the tape to the substrate. Upon firing, the tackifying resin ensures near zero shrinkage of the tape in the XY plane without usage of elevated pressures or temperatures during lamination of green tape to the substrate. The thermal degradation completion temperature of the tackifying resin is lower than that of the resin binder used in the green tape.
Abstract:
Formulations and methods of making solar cells and solar cell contacts are disclosed. In general, the invention presents a solar cell contact made from a mixture wherein the mixture comprises a metal portion, which, prior to firing, comprises nickel and silver.
Abstract:
The present invention provides an electronic device having a lead-free and cadmium-free glass composition applied thereto and fired to form an acid resistant overglaze, and a method of overglazing an electronic device using the lead-free and cadmium-free glass composition. The lead-free and cadmium-free glass composition fuses at low firing temperatures and is particularly suitable for use in thick film pastes. The glass composition forms predominantly bismuth titanate and/or zinc titanate crystals upon firing. Preferably, glass compositions include by weight from about 11% to about 52% SiO2, from 3.4% to about 40% TiO2, up to about 75% Bi2O3, up to about 40% by weight ZnO, where the sum of Bi2O3 and ZnO comprises from about 15% to about 85% of the glass composition by weight.
Abstract translation:本发明提供了一种电子装置,其具有施加到其上的无铅和无镉玻璃组合物并烧制以形成耐酸釉料,以及使用无铅和无镉玻璃组合物来搪瓷电子器件的方法。 无铅和无镉玻璃组合物在低烧成温度下熔化,特别适用于厚膜糊剂。 玻璃组合物在烧制时主要形成钛酸铋和/或钛酸锌晶体。 优选地,玻璃组合物包括按重量计约11%至约52%SiO 2,3.4%至约40%TiO 2,至多约75%Bi 2 O 3,至多约40%重量的ZnO,其中Bi 2 O 3和ZnO的总和包含 约占玻璃组合物重量的约15%至约85%。
Abstract:
A method of applying a ceramic coating to a substrate comprises laminating one or more layers of a green ceramic tape to a rigid substrate using a tackifying resin to adhere the tape to the substrate. Upon firing, the tackifying resin ensures near zero shrinkage of the tape in the XY plane without usage of elevated pressures or temperatures during lamination of green tape to the substrate. The thermal degradation completion temperature of the tackifying resin is lower than that of the resin binder used in the green tape.
Abstract:
A method of applying a ceramic coating to a substrate comprises laminating one or more layers of a green ceramic tape to a rigid substrate using a tackifying resin to adhere the tape to the substrate. Upon firing, the tackifying resin ensures near zero shrinkage of the tape in the XY plane without usage of elevated pressures or temperatures during lamination of green tape to the substrate. The thermal degradation completion temperature of the tackifying resin is lower than that of the resin binder used in the green tape.
Abstract:
Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.