摘要:
DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
摘要:
Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
摘要:
Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
摘要:
Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
摘要:
A structure including a transistor and a trench structure, with the trench structure inducing only a portion of the strain in a channel region of the transistor.
摘要:
A method for minimizing particle generation during deposition of a graded Si1-xGex layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si1-xGex layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si1-xGex层期间最小化颗粒产生的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体的分解温度大于锗烷,并沉积 分级的Si1-xGex层,其具有大于约0.15的最终Ge含量和小于约0.3颗粒/ cm 2的颗粒密度。
摘要:
A method for minimizing particle generation during deposition of a graded Si.sub.1-xGe.sub.x layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si.sub.1-xGe.sub.x layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm.sup.2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si 1-x Ge x层的过程中使颗粒产生最小化的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体具有分解 温度大于锗烷,并沉积具有大于约0.15的最终Ge含量并且小于约0.3颗粒/ cm 2的颗粒密度的梯度Si 1-x Ge 2层在衬底上 。
摘要:
DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
摘要:
DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
摘要:
Methods of forming areas of alternative material on crystalline semiconductor substrates, and structures formed thereby. Such areas of alternative material are suitable for use as active areas in MOSFETs or other electronic or opto-electronic devices.