摘要:
A semiconductor device includes: a semiconductor substrate, at least a surface portion thereof serving as a low-resistance drain layer of a first conductivity type; a first main electrode connected to the low-resistance drain layer; a high-resistance epitaxial layer of a second-conductivity type formed on the low-resistance drain layer; a second-conductivity type base layer selectively formed on the high-resistance epitaxial layer; a first-conductivity type source layer selectively formed in a surface portion of the second-conductivity type base layer; a trench formed in a region sandwiched by the second-conductivity type base layers with a depth extending from the surface of the high-resistance epitaxial layer to the semiconductor substrate; a jfet layer of the first conductivity type formed on side walls of the trench; an insulating layer formed in the trench; an LDD layer of the first-conductivity type formed in a surface portion of the second-conductivity type base layer so as to be connected to the first-conductivity type jfet layer around a top face of the trench; a control electrode formed above the semiconductor substrate so as to be divided into a plurality of parts, and formed on a gate insulating film formed on a part of the surface of the LDD layer, on surfaces of end parts of the first-conductivity type source layer facing each other across the trench, and on a region of the surface of the second-conductivity type base layer sandwiched by the LDD layer and the first-conductivity type source layer; and a second main electrode in ohmic contact with the first-conductivity type source layer and the second-conductivity type base layer so as to sandwich the control electrode.
摘要:
This semiconductor device comprises a drift layer of a first conductivity type formed on a drain layer of a first conductivity type, and a drain electrode electrically connected to the drain layer. A semiconductor base layer of a second conductivity type is formed in a surface of the drift layer, and a source region of a first conductivity type is further formed in the semiconductor base layer.A source electrode is electrically connected to the source region and a semiconductor base layer. Plural gate electrodes are formed through a gate insulation film so that a semiconductor base layer may be sandwiched by the gate electrodes. The width of the semiconductor base layer sandwiched by the gate electrodes is 0.3 micrometers or less.
摘要:
It is an object of the present invention to provide a pupillary reflex checking apparatus that enables a subject to check his own pupillary reflex and that keeps down cost and to provide a fatigue recovery facilitating apparatus that includes the pupillary reflex checking apparatus. The pupillary reflex apparatus of the present invention includes, as essential elements of its structure, a reflecting unit and a stimulus applying unit. Of these, the reflecting unit has a structure which includes an optical reflecting surface disposed in a plane that intersects with a visual axis of a subject such that an image of a pupil of a subject's eye is formed on the optical reflecting surface. Further, the stimulus applying unit applies a stimulus to induce the pupillary reflex in the subject. Specifically, it is possible to use a light source which gives a light stimulus to the subject's eye, such as an LED light source, an electric bulb, a strobe, or the like, as the stimulus applying unit.
摘要:
Disclosed is a trench MOSFET, including: a trench gate structure having a gate electrode and a gate insulating film; an n-type diffusion layer formed to face the gate electrode via the gate insulating film at an upper portion of the trench; a p-type base layer formed to face the gate electrode via the gate insulating film at a lower portion than the upper portion; an n-type epitaxial layer locating to face the gate electrode via the gate insulating film at a further lower portion than the lower portion; a metal layer formed departing from the trench in parallel with a depth direction of the trench, penetrating the n-type diffusion layer and the p-type base layer, to reach the n-type epitaxial layer; and a p-type layer with higher impurity concentration than the p-type base layer, locating to be in contact with the p-type base layer and the metal layer.
摘要:
A second semiconductor region is formed on a first semiconductor region. A third semiconductor region is formed on a part of the second semiconductor region. A trench ranges from a surface of the third semiconductor region to the third semiconductor region and the second semiconductor region. The trench penetrates the third semiconductor region, and the depth of the trench is shorter than that of a deepest bottom portion of the second semiconductor region, and the second semiconductor region does not exist under a bottom surface of the trench. A gate insulating film is formed on facing side surfaces of the trench. First and second gate electrodes are formed on the gate insulating film. The first and second gate electrodes are separated from each other. The conductive material is formed between the first and second gate electrodes on the side surfaces of the trench, with an insulating film intervened therebetween.
摘要:
An electronic power unit includes first and second MOS transistors and a digital control circuit. The first MOS transistor applies a voltage to the load. The second MOS transistor remains on while the first MOS transistor remains off and rectifies the current flowing in the load. The digital control circuit turns on the first transistor upon lapse of a first time interval from the time the second MOS transistor is turned off. The digital control circuit turns on the second MOS transistor upon lapse of a second time interval from the time the first MOS transistor is turned off. The digital control circuit controls the on-period of the first MOS transistor so that the voltage applied to the load is constant in a discontinuous conduction mode. The digital control circuit determines, while the voltage applied to the load is constant, an optimal value of the first time from the duty.
摘要:
A semiconductor device includes a first semiconductor region having a first conductivity type, a second semiconductor region formed on the first semiconductor region and having the first conductivity type, a third semiconductor region formed in a surface of the second semiconductor region and having a second conductivity type, a fourth semiconductor region formed in the surface of the second semiconductor region and having the second conductivity type, and a gate structure formed on the second and fourth semiconductor region. The semiconductor device further includes a conductive member arranged in the trench extending from a surface of the fourth semiconductor region to the first semiconductor region, the trench having one sidewall surface flush with a sidewall surface of the gate structure.
摘要:
In a cable mounting structure, a casing body is formed with a through hole through which a cable is inserted. A first retainer is secured to a first part of the cable and fitted with the through hole. A second retainer is attached on the casing body while holding a second part of the cable. The first retainer is an elastic member having a groove fitted with an edge of the through hole. The second retainer includes a retaining member provided on the casing body while being formed with a guide groove, and a holding member detachably fitted into the guide groove.
摘要:
A conductivity modulated MOSFET, having a semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on the semiconductor substrate and having a high resistance, a base layer of the first conductivity type formed in the semiconductor layer, a source layer of the second conductivity type formed in the base layer, a gate electrode formed on a gate insulating film which is formed on a channel region, the channel region being formed in a surface of the base layer between the semiconductor layer and the source layer, a source electrode ohmic-contacting the source layer and the base layer, and a drain electrode formed on the surface of the semiconductor substrate opposite to the semiconductor layer, characterized in that the conductivity modulated MOSFET has a saturation current smaller than a latch-up current when a predetermined gate voltage is applied to the gate electrode.
摘要:
An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.