Abstract:
A resistive-switching memory element is described. The memory element includes a first electrode, a porous layer over the first electrode including a point defect embedded in a plurality of pores of the porous layer, and a second electrode over the porous layer, wherein the nonvolatile memory element is configured to switch between a high resistive state and a low resistive state.
Abstract:
Controlled localized defect paths for resistive memories are described, including a method for forming controlled localized defect paths including forming a first electrode forming a metal oxide layer on the first electrode, masking the metal oxide to create exposed regions and concealed regions of a surface of the metal oxide, and altering the exposed regions of the metal oxide to create localized defect paths beneath the exposed regions.
Abstract:
Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
Abstract:
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
Abstract:
Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
Abstract:
Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
Abstract:
Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
Abstract:
In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
Abstract:
Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.