摘要:
A method of fabricating a RRAM includes preparing a substrate and forming a bottom electrode ori the substrate. A PCMO layer is deposited on the bottom electrode using MOCVD or liquid MOCVD, followed by a post-annealing process. The deposited PCMO thin film has a crystallized PCMO structure or a nano-size and amorphous PCMO structure. A top electrode is formed on the PCMO layer.
摘要:
A method of monitoring synthesis of PCMO precursor solutions includes preparing a PCMO precursor solution and withdrawing samples of the precursor solution at intervals during a reaction phase of the PCMO precursor solution synthesis. The samples of the PCMO precursor solution are analyzed by UV spectroscopy to determine UV transmissivity of the samples of the PCMO precursor solution and the samples used to form PCMO thin films. Electrical characteristics of the PCMO thin films formed from the samples are determined to identify PCMO thin films having optimal electrical characteristics. The UV spectral characteristics of the PCMO precursor solutions are correlated with the PCMO thin films having optimal electrical characteristics. The UV spectral characteristics are used to monitor synthesis of future batches of the PCMO precursor solutions, which will result in PCMO thin films having optimal electrical characteristics.
摘要:
A metal/semiconductor/metal (MSM) back-to-back Schottky diode, a resistance memory device using the MSM diode, and associated fabrication processes are provided. The method includes: providing a substrate; forming a metal bottom electrode overlying the substrate, having a first work function; forming a semiconductor layer overlying the metal bottom electrode, having a second work function, less than the first work function; and, forming a metal top electrode overlying the semiconductor layer, having a third work function, greater than the second work function. The metal top and bottom electrodes can be materials such as Pt, Au, Ag, TiN, Ta, Ru, or TaN. In one aspect, the metal top electrode and metal bottom electrode are made from the same material and, therefore, have identical work functions. The semiconductor layer can be a material such as amorphous silicon (a:Si), polycrystalline Si, InOx, or ZnO.
摘要:
A method is provided for forming a buffered-layer memory cell. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) memory film overlying the bottom electrode; forming a memory-stable semiconductor buffer layer, typically a metal oxide, overlying the memory film; and, forming a top electrode overlying the semiconductor buffer layer. In some aspects of the method the semiconductor buffer layer is formed from YBa2Cu3O7-X (YBCO), indium oxide (In2O3), or ruthenium oxide (RuO2), having a thickness in the range of 10 to 200 nanometers (nm). The top and bottom electrodes may be TiN/Ti, Pt/TiN/Ti, In/TiN/Ti, PtRhOx compounds, or PtIrOx compounds. The CMR memory film may be a Pr1-XCaXMnO3 (PCMO) memory film, where x is in the region between 0.1 and 0.6, with a thickness in the range of 10 to 200 nm.
摘要翻译:提供了一种用于形成缓冲层存储单元的方法。 该方法包括:形成底部电极; 形成覆盖底部电极的巨大磁阻(CMR)记忆膜; 形成存储器稳定的半导体缓冲层,通常为覆盖存储膜的金属氧化物; 并且形成覆盖半导体缓冲层的顶部电极。 在该方法的一些方面,半导体缓冲层由YBa 2 N 3 O 7-X(YBCO),氧化铟(In 2或2 O 3)或氧化钌(RuO 2 N 2),其厚度在10-200纳米(nm)的范围内。 顶部和底部电极可以是TiN / Ti,Pt / TiN / Ti,In / TiN / Ti,PtRhOx化合物或PtIrOx化合物。 CMR存储器膜可以是Pr 1-X C x MnO 3(PCMO)存储膜,其中x在0.1之间的区域 和0.6,厚度在10至200nm的范围内。
摘要:
An MFIS memory array having a plurality of MFIS memory transistors with a word line connecting a plurality of MFIS memory transistor gates, wherein all MFIS memory transistors connected to a common word line have a common source, each transistor drain serves as a bit output, and all MFIS channels along a word line are separated by a P+ region and are further joined to a P+ substrate region on an SOI substrate by a P+ region is provided. Also provided are methods of making an MFIS memory array on an SOI substrate; methods of performing a block erase of one or more word lines, and methods of selectively programming a bit.
摘要:
A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and, forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
摘要翻译:提供了多层Pr 1 x 1 x x MnO 3(PCMO)薄膜电容器和相关的沉积方法,用于形成双极开关 薄膜。 该方法包括:形成底部电极; 沉积纳米晶体PCMO层; 沉积多晶PCMO层; 形成具有双极开关特性的多层PCMO膜; 并且形成覆盖PCMO膜的顶部电极。 如果多晶层沉积在纳米晶层之上,则可以用窄脉冲宽度,负电压脉冲写入高电阻。 PCMO膜可以使用窄脉冲宽度,正幅度脉冲复位为低电阻。 同样,如果纳米晶层沉积在多晶层上,则可以用窄脉冲宽度,正电压脉冲写入高电阻,并使用窄脉冲宽度,负幅度脉冲将其复位为低电阻。
摘要:
The present invention discloses a novel ferroelectric transistor design using a resistive oxide film in place of the gate dielectric. By replacing the gate dielectric with a resistive oxide film, and by optimizing the value of the film resistance, the bottom gate of the ferroelectric layer is electrically connected to the silicon substrate, eliminating the trapped charge effect and resulting in the improvement of the memory retention characteristics. The resistive oxide film is preferably a doped conductive oxide in which a conductive oxide is doped with an impurity species. The doped conductive oxide is most preferred to be In2O3 with the dopant species being hafnium oxide, zirconium oxide, lanthanum oxide, or aluminum oxide.
摘要翻译:本发明公开了一种使用电阻氧化膜代替栅极电介质的新型铁电晶体管设计。 通过用电阻氧化膜代替栅极电介质,并且通过优化膜电阻的值,铁电层的底栅电连接到硅衬底,消除了捕获的电荷效应并导致存储保持率的提高 特点 电阻氧化膜优选为其中掺杂有杂质物质的导电氧化物的掺杂导电氧化物。 掺杂的导电氧化物最优选为掺杂物质为氧化铪,氧化锆,氧化镧或氧化铝的In 2 N 3 O 3。
摘要:
A method is provided for forming a Pr0.3Ca0.7MnO3 (PCMO) thin film with crystalline structure-related memory resistance properties. The method comprises: forming a PCMO thin film with a first crystalline structure; and, changing the resistance state of the PCMO film using pulse polarities responsive to the first crystalline structure. In one aspect the first crystalline structure is either amorphous or a weak-crystalline. Then, the resistance state of the PCMO film is changed in response to unipolar pulses. In another aspect, the PCMO thin film has either a polycrystalline structure. Then, the resistance state of the PCMO film changes in response to bipolar pulses.
摘要:
Methods of forming depositing a ferroelectric thin film, such as PGO, by preparing a substrate with an upper surface of silicon, silicon oxide, or a high-k material, such as hafnium oxide, zirconium oxide, aluminum oxide, and lanthanum oxide, depositing an indium oxide film over the substrate, and then depositing the ferroelectric film using MOCVD.
摘要:
An ultra-shallow surface channel MOS transistor and method for fabricating the same have been provided. The method comprises: forming CMOS source and drain regions, and an intervening well region; depositing a surface channel on the surface overlying the well region; forming a high-k dielectric overlying the surface channel; and, forming a gate electrode overlying the high-k dielectric. Typically, the surface channel is a metal oxide, and may be one of the following materials: indium oxide (In2O3), ZnO, RuO, ITO, or LaX-1SrXCoO3. In some aspects, the method further comprises: depositing a placeholder material overlying the surface channel; and, etching the placeholder material to form a gate region overlying the surface channel. In one aspect, the high-k dielectric is deposited prior to the deposition of the placeholder material. Alternately, the high-k dielectric is deposited following the etching of the placeholder material.