摘要:
Technology for communicating enhanced physical downlink control channels (ePDCCHs) configured for inter-cell interference coordination (ICIC) for a plurality of cells in a physical resource block (PRB) is disclosed. One method can include a node mapping a serving cell control channel element (CCE) in an serving cell ePDCCH in a PRB and a coordination cell CCE in a coordination cell ePDCCH in the PRB. The node can transmit the map of the serving cell CCE and the coordination cell CCE to a wireless device.
摘要:
Embodiments of user equipment and methods for improved uplink transmission power management and scheduling, are generally described herein. For example, in an aspect, a method of uplink power management is presented, the method includes determining whether a total desired transmission power exceeds a total configured maximum output power for a subframe. When the total desired transmission power exceeds the total configured maximum output power, the method includes allocating a minimum proactive power limitation to each serving cell, assigning a remaining power to one or more channels based on priority, and computing a total power assignment based on the allocating and the assigning.
摘要:
In accordance with some embodiments, uplink control information, including a channel quality index, may be transmitted using at least two layers. As a result, more information can be provided for use in situations, such as those involving carrier aggregation, where information for a large number of component carriers must all be provided on one primary component carrier.
摘要:
This disclosure describes systems, and methods related to parallel channel training in communication networks. A first computing device comprising one or more processors and one or more transceiver component may receive a first connection request from a second computing device, and a second connection request from a third computing device. The first computing device may send the first training field to the second computing device based at least in part on the first connection request and sending in parallel, the second training field to the third computing device based at least in part on the second connection request. The first computing device may establish a first spatial channel stream with the second computing device based at least in part on the first training field and a second spatial channel stream with the third computing device based at least in part on the second training field.
摘要:
Technology for mapping an enhanced physical downlink control channel to physical resource blocks in a radio frame is disclosed. One method comprises mapping modulated symbols in the ePDCCH to at least one control channel element. The at least one control channel element can be mapped to resource elements located in a plurality of distributed physical resource blocks in a subframe, wherein each resource block is separated by at least one additional resource block in the subframe. The mapping can also be to resource elements distributed in a single resource block in the subframe, wherein the control channel element is mapped to be distributed in frequency and time relative to other mapped resource elements in the single resource block.
摘要:
Provided are systems for selecting a frequency resource allocation index that allocates a first resource unit (RU) utilized in a narrow bandwidth transmission, setting a second RU in the frequency resource allocation index as non-allocated, and receiving a stream index of a multiple-user multiple-input multiple-output (MU-MIMO) transmission, the stream index including a spatial stream indication for a station (STA) and an indication of a number of high-efficiency long training field (HE-LTF) symbols in a current PLCP Protocol Data Unit (PPDU).
摘要:
Example systems, methods, and devices for mitigating interference in wireless networks are discussed. One example method includes the operations of passing channel frequency offsets of a plurality of LTF symbols on a plurality of subcarriers through a high pass frequency band, encoding the plurality of LTF symbols with a plurality of LTF sequences across frequency, and encoding the LTF symbols in time and/or frequency. Another example includes the operations of receiving a plurality of LTF symbols on a plurality of subcarriers for channel estimation of one or more streams, removing the encoding across time, removing the encoding across frequency, and removing the LTF sequence(s), and passing the modified LTF symbols through a smoothing filter, for example, a low pass filter for removing the interference due to CFOs. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
Embodiments of the disclosure provide auto-detection in wireless telecommunications. Certain embodiments provide or otherwise implement a specific sequence of bits and/or symbols for auto-detection. The specific sequence of bits can be embodied in or can include output codebits from an encoder in a communication device that can send a wireless transmission including the specific sequence. In one embodiment, the encoder can compute or otherwise generate cyclic redundancy checks (CRCs) or other types of validation checks at the communication device. The specific sequence can be determined using the payload of a packet frame. Both the manner in which the specific sequence is generated and the temporal order in which the specific sequence is received relative to other payload in the packet frame can provide specificity to the sequence.
摘要:
Embodiments herein relate to wireless communication using combined channel training and physical layer header (SIG) signaling. Devices that comply with the 802.11 ax or High Efficiency WLAN (HEW) standard may generate and transmit packets that include such combined information. The combined information may be beamformed to a receiver device via an OFDM signal, which may be decoded by the receiver device to obtain subsequent data included in the signal. For example, initial training symbols associated with channel training subcarriers in the signal may be detected and used to perform a rough estimate of the channel. The rough estimate may thereafter be refined using data symbols detected from adjacent data subcarriers using the channel training symbols. In this way, data subcarriers may also be used to determine a channel response along with channel training subcarriers. Channel training information may be transmitted with data, such as user-specific information, in a single symbol.
摘要:
A PDSCH resource element mapping method is used for joint transmissions. The method solves a problem of colliding resource elements in joint transmissions, due to interference caused when PDSCH resource elements are transmitted in the resource block of one cell and cell-specific reference signals (CRSs) are transmitted in the same location of the resource block of an adjacent cell. The method is particularly beneficial for coordinated multipoint (CoMP) transmissions. The PDSCH resource element mapping method employs one of three schemes for transmitting the collided resource elements, with minimal interference. In the first scheme, one PDSCH symbol is transmitted over three consecutive CRS-collided PDSCH resource elements. In the second scheme, two PDSCH symbols are transmitted over three consecutive CRS-collided PDSCH resource elements. In a third scheme, CRS-collided resource elements are transmitted using a lower modulation order than is specified by the modulation and coding scheme.