Abstract:
A method and system for servicing a vehicle in accordance with pre-determined maintenance settings is provided. Maintenance settings can be communicated to a vehicle maintenance tool via a communication device and the vehicle maintenance tool can interact with the vehicle in accordance with the maintenance settings.
Abstract:
An air maintenance tire pump simulator that simulates the environment of an air maintenance tire system is provided. The simulator includes at least one pneumatic cylinder, a structure that forms a closed cavity, and a pneumatic conduit extending between and fluidly connecting the pneumatic cylinder and the closed cavity. A cam is operably connected to a motor, and is also operably connected to the pneumatic cylinder. Engagement of the motor actuates rotation of the cam, which in turn actuates operation of the pneumatic cylinder to increase a pressure in the closed cavity. A method of simulating an air maintenance tire system is also provided.
Abstract:
A method of setting the rides height of the air springs and air pressures of the tires, including receiving a user selected setting or preprogrammed ride height settings; sensing a ride height of, and air pressure within, each of the air springs; determining the weight of the vehicle based on the sensed ride height and air pressure within each of the air springs; providing specified ride heights for the left and right front and rear air springs; determining specified air pressures for the left and right front and rear tire inflators, based upon the determined weight of the vehicle and selected setting; inflating the left and right front and rear air springs to the specified ride heights; and inflating the left and right front and rear tires to the specified air pressures.
Abstract:
A pressure and temperature compensated valve assembly includes a flow valve allowing inflation flow from a control port to a tire port and controlling deflation flow from the tire port to the control port. A throttle valve restricts deflation flow between the tire port and the control port when deflating the tire at high flow rates or when tire pressure is high, thus enabling the flow valve to be closed. The throttle valve includes a throttle diaphragm that throttles in response to flow from the tire port and which does not restrict inflation flow from the control port. The valve assembly further includes a temperature responsive member engaging the flow valve, and which deforms in response to a change in temperature in the valve assembly, thus negating temperature effects on the flow valve, allowing the flow valve to close at a consistent force across a range of operating temperatures.
Abstract:
A tire pressure control system includes a tire mounted on a wheel that is connected to an axle, with pneumatic fittings communicating with an interior of this tire. A digital pressure switch has a pair of pneumatic lines that extend from it. These pneumatic lines connect to the pneumatic fittings so that the digital pressure switch communicates with the tire. An electronic solenoid valve communicates with the digital pressure switch by electrical connection to communicate with the interior of the tire. The electronic solenoid valve operates in a corresponding relationship to the interior of the tire so gas above a set pressure can pass to atmosphere. A battery assembly powers and activates the digital pressure switch, and further powers the electronic solenoid valve through the digital pressure switch. A housing houses the digital pressure switch, the electronic solenoid valve, and the battery assembly.
Abstract:
Vehicle systems and components are set forth, which aim to reduce rolling friction caused in part by the contact between the vehicle's tires and the ground surface over which the vehicle is traversing. These systems and/or components thereof may increase the overall fuel efficiency of a vehicle. In the examples provided, the systems and/or components change the tread contact patch of one or more tires during movement of the vehicle.
Abstract:
In various example embodiments, a system and method for determining a haul weight are disclosed. A method includes, determining that one or more vehicle performance parameters fall within a threshold range, storing a plurality of data pairs that include longitudinal acceleration and drive force, determining a slope of a line that linearly approximates the plurality of data pairs, and determining the weight being hauled by the vehicle by subtracting the weight of the vehicle from the value representing the slope of the line.
Abstract:
An autonomous valve assembly for the regulation, depressurization and elevation of the pressure in pneumatic equipment that presents a valve body 22 and an air regulator body 4 with a compressed air intake 54 connected to a source of compressed air, whereby the body 4 presents two pressure regulators 45, 46 that regulate the pressure at a desired level and communicate it to an air diverter plunger 6 with reciprocating movement to cyclically divert the compressed air to a pressurization plunger assembly 9A, 5, 9B that has a reciprocating movement within a pressure casing 20A, 20B, wherein said air pressure regulators 45, 46 are adjusted to regulate the passage of air to a first pressure and a second pressure.
Abstract:
A connector system and tire assembly includes an elongate integral air passageway contained within a flexible tire component of a tire carcass, the air passageway extending between an air inlet cavity and an air outlet cavity in the flexible tire component, and the air passageway extending at least a partial circumferential path around the tire carcass. A hollow dome-shaped inlet nut seats within the inlet cavity and a hollow dome-shaped outlet nut seats within the outlet cavity. The inlet nut couples to an air inlet device for conducting air external to the tire carcass into the inlet nut central chamber; and the outlet nut outward body side couples to a valve device positioned within the tire cavity.
Abstract:
Methods and systems for storing and dispensing compressed air are provided for inflating a tire. Specifically, a compressed air reservoir is integrated into a human-powered vehicle, such as a bicycle frame component, to provide for portable and convenient inflation of a bicycle tire.