Abstract:
The disclosure provides a battery which can include a power supply and power supply circuit, the power supply circuit connected to the power supply. The power supply can discharge through the power supply circuit. An electronic switch can control the power-on or off of the power supply, thereby avoiding the generation of sparks during the power on process and allowing for the normal use of the battery and the safety of the aircraft. The disclosure also provides an aircraft having the battery.
Abstract:
A battery pack and connecting circuits of battery modules. The battery pack includes a plurality of battery modules connected in series, wherein each battery module is provided with a connecting circuit. When the battery module operates normally, the connecting circuit serially connects the current battery module to the previous battery module and the succeeding battery module. When the battery module operates abnormally, the connecting circuit selectively disconnects the current battery module, and if it disconnects the current battery module, it directly connects the previous battery module and the succeeding battery module in series. When a battery module is damaged or abnormal, the current damaged battery module can be disconnected from the series battery pack and bypassed. As such, the previous battery module may be directly connected with the succeeding battery module, ensuring the normal connection of the series circuit.
Abstract:
A hybrid vehicle includes a fraction battery, a powertrain coupled to the battery, and a controller or a battery management system having a controller. The controller is programmed to set a state of charge (SOC) target for the battery according to losses associated with the powertrain and an angle of inclination of the vehicle. The controller is programmed to respond to a SOC of the battery and a speed of the vehicle. When the SOC is greater than the target and the speed is greater than a threshold the controller is programmed to discharge the battery to achieve the target.
Abstract:
A lithium ion power battery lossless charger adopting a charging method of overall serial constant-current and monomer parallel constant-voltage to realize lossless charging on lithium ion power batteries. Charging efficiency is close to 100%, and charging and discharging are completely based on the characteristic curve of the battery All functions of a battery system, a charging system, a discharging system and a maintenance management system are realized only by a simple circuit, and no overcharge, overheating, over discharge, over current or short circuit occurs. The terminal voltages of all monomer batteries are completely equal when charging is finished, and no equalized charging is required.
Abstract:
A method for inducing a secure state of a battery module of a motor vehicle includes continuously checking and evaluating a current state of the battery module. The secure state of the battery module to be induced is a state, in which effects of a defective battery module are reduced. The secure state is induced in dependence of a motor vehicle state.
Abstract:
An apparatus for state of charge compensation includes at least two energy storage modules, each energy storage module having an energy storage module voltage, at least two voltage converter modules, with each voltage converter module being electrically connected to a respective one of the at least two energy storage modules in one-to-one correspondence and forming a corresponding submodule, an electrical machine electrically connected to the at least two submodules, and a control device configured to control a flow of electrical energy between at least one of the submodules and the electrical machine.
Abstract:
One embodiment relates to a hybrid vehicle drive system for a vehicle including a first prime mover, a first prime mover driven transmission, a rechargeable power source, and a PTO. The hybrid vehicle drive system can include a control system for reducing or eliminating regenerative braking during a traction control or anti-lock braking event.
Abstract:
A battery management system, such as for a vehicle having an electrically powered motor that is powered by a plurality of high voltage lithium ion battery packs, includes a circuit operable to detect active isolation for high voltage lithium ion battery packs. The circuit includes a single bias switch and the circuit detects active isolation utilizing a ratio driven algorithm that takes into account analog voltages with the bias switch open and closed. The circuit utilizes a ratio threshold for acceptable isolation breakdown.
Abstract:
A method is described for the control of a battery comprising at least one battery module string with a number of battery modules connected in a series. Each battery module comprises at least one battery cell, at least one coupling unit, a first connection and a second connection and is designed for accommodating one of at least two switching states depending on an actuation of the coupling unit. Different switching states correspond to different voltage values between the first connection and the second connection of the battery module. A first and second output voltage of the battery module string are provided and applied to an inductivity during a first and second time interval. In the process, the second output voltage has the opposite polarity of the first output voltage.