Abstract:
A method for processing data with parameters of a vehicle, power train or power train component of different origin comprises reading out of the data and the carrying out a statistical analysis for determining the minimum and maximum axis values of the data associated with the same parameters. Subsequently, the data is converted and compressed into a common format, and the data associated with the same parameters is provided with common axes and the same number of sampling points, wherein the start and end figures of the axes results from the minimum and maximum axis figures. The data processed in this way may then be subjected to further processing.
Abstract:
A torque management system and method is described by which the torque provided by an engine can be controlled based on a mass of the vehicle and, if available, instantaneous and/or predictive slope information. Also, in some modes of operation, torque can be controlled based on speed limit information for upcoming road segments to be traveled by a vehicle. In addition to controlling the maximum allowable torque, optionally the minimum allowable torque can also be controlled to prevent inadvertent decelerations of the vehicle. A driver/operator can optionally override the torque control and the history of override requests can optionally be used to adjust overrides of the system. A plurality of torque control approach sub-methods can be made available with the appropriate sub-mode being selected depending, for example, upon the extent of the available information.
Abstract:
A vehicle having and engine and traction battery and a method of operating an engine are disclosed. A controller operates the engine according to quantized engine power levels. The quantization level depends upon a total power demand. For low values of total power demand, the selected quantization level may be at least equal to the total power demand. For high values of total power demand, the selected quantization level may be less than or equal to the total power demand. In between low and high values, the selected quantization level may be the quantization level nearest the total power demand. The traction battery may receive or provide power depending on the selected quantization level.
Abstract:
An automatic shut-off of the engine of a motor vehicle is only activated if the motor vehicle has been moved according to a specific criterion after the last starting procedure of the engine. The undesired shut-off of an engine can thus be prevented in some situations, such as e.g. when a garage is being opened or when ice is being scraped off the windows of a motor vehicle.
Abstract:
A method and apparatus for collecting and evaluating powered vehicle operation utilizing on-board diagnostic components and location determining components or systems. The invention creates one or more databases whereby identifiable behavior or evaluative characteristics can be analyzed or categorized. The evaluation can include predicting likely future events. The database can be correlated or evaluated with other databases for a wide variety of uses.
Abstract:
According to one embodiment, an apparatus includes an electronic controller (15) for an internal combustion engine (12) of a motor vehicle. The electronic controller includes a location detection module (32) configured to identify a location of the motor vehicle by a global positioning system (GPS) device (18). Also, the electronic controller includes a driving condition prediction module (34) configured to determine a direction of travel and access geographic information data for a path to be traveled by the motor vehicle. The electronic controller also has a simulation module (36) configured to simulate engine performance including effects from parasitic loads. Still further, the electronic controller includes a parasitic load control module (38) configured to adjust the timing for one or more of a regeneration process for an exhaust filter and at least one other parasitic load in order to maintain engine performance at or above a predetermined threshold.
Abstract:
A system and method for providing vehicle driving information are provided. The method includes receiving, by a controller, one or more status variables that indicate a driving pattern of a driver and determining whether the one or more input status variables are within a predetermined error range of a stored potential dangerous section status variable. In addition the method includes determining, by the controller, whether a warning message is output based on a present velocity of the vehicle when the one or more input status variables are within the predetermined error range of the stored potential dangerous section status variable.
Abstract:
A vehicle control device includes: an erroneous operation determination unit that determines whether erroneous operation of an accelerator pedal is performed; an increase suppression unit that suppresses an increase in driving force of a vehicle in response to the erroneous operation of the accelerator pedal; a position measuring unit that measures the depressed position of a brake pedal; a tendency determination unit that determines a deviation tendency of the depressed position of the brake pedal; and a suppression amount varying unit that varies a suppression amount of the increase in the driving force on the basis of the deviation tendency.
Abstract:
A vehicle operator assisting apparatus is configured to assist an operator of an own vehicle by displaying an image of a virtual preceding vehicle visually recognizable by the operator as if the virtual preceding vehicle was running in front of said own vehicle in a running state. The assisting apparatus comprises: a history data base storing a driving history of said operator; a virtual preceding vehicle control portion determining a running state of said virtual proceeding vehicle based on said driving history generating portion generating a relationship between a distance between said own vehicle and an actual preceding vehicle, and a running speed of said own vehicle, and storing the relationship in said history database. Said virtual preceding vehicle control portion includes a driving characteristics extracting portion determining a distance between said own vehicle and said virtual preceding vehicle based on said relationship.
Abstract:
Aspects of the present disclosure relate generally to limiting the use of an autonomous or semi-autonomous vehicle by particular occupants based on permission data. More specifically, permission data may include destinations, routes, and/or other information that is predefined or set by a third party. The vehicle may then access the permission data in order to transport the particular occupant to the predefined destination, for example, without deviation from the predefined route. The vehicle may drop the particular occupant off at the destination and may wait until the passenger is ready to move to another predefined destination. The permission data may be used to limit the ability of the particular occupant to change the route of the vehicle completely or by some maximum deviation value. For example, the vehicle may be able to deviate from the route up to a particular distance from or along the route.